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Introduction 
Reliability of computer systems is a major concern, especially for systems used in life- 

critical applications. Accurate estimation of reliability is particularly relevant to fault-tolerant 
computer systems that are often used in such life-critical applications as flight-control systems. 
Fault-tolerant computer systems utilize such techniques as self-checking codes, redundancy, 
and reconfiguration to mask the effects of errors in the system in an effort to achieve higher 
reliability. Analytic computation of the exact reliability of a computer system is virtually 
impossible except for the most simple systems. Hence, several methods including fault-tree 
analysis, Petri net analysis, and Markov modeling have been used to estimate the reliability of 
the hardware components of fault-tolerant computer systems. 

As fault-tolerant systems grow in complexity, assessing reliability becomes more difficult. 
Realistic models of fault-tolerant computer systems can easily have several thousand states. 
To aid in the reliability assessment of such systems, automated tools-such as CARE I11 
(Computer-Aided Reliability Estimation, version 3) ,  ARIES (Automated Reliability Interactive 
Estimation System), and PAWS (Pad6 Approximation With Scaling)-that implement a range 
of techniques for estimating reliability have been created (refs. 1 and 2). The Semi-Markov 
Unreliability Range Evaluator (SURE) program developed at NASA Langley Research Center 
is one of the latest reliability analysis tools to be introduced (ref. 3). The SURE program 
implements mathematics developed by White (ref. 4) and Lee (ref. 5) for analytically specifying 
lower and upper bounds on the death-state probabilities of a semi-Markov model in order to 
provide bounds on the unreliability of a modeled system. 

If tools such as SURE are to be used in the assessment of highly reliable computer systems, 
the tools themselves must produce accurate outputs. For our purposes, a reliability estimate 
can be defined as accurate if that estimate lies within acceptable limits of the true reliability. 
Engineering judgment is then used to specify the acceptable limits based on a given system 
and its intended application. As a general rule of thumb, if a reliability estimate agrees to at 
least two significant digits with another estimate that is known to be accurate, then the new 
estimate is considered good enough. 

Investigation of the accuracy of SURE’s bounds involves demonstrating that the bounds 
given by SURE actually envelop the exact unreliability for any given semi-Markov model of a 
system and that the separation between the upper and lower bounds is within an acceptable 
tolerance. Again, this tolerance is subject to engineering judgment about the system being 
analyzed and its intended application. To build confidence in the validity of the SURE program, 
the mathematics has been scrutinized from a theoretical standpoint, and the program has been 
subjected to numerous models and test cases to inspect the implementation of the mathematics. 

White (ref. 4) gives a rigorous, mathematical proof of his multiple recovery theorem that 
contains the bounds that are the basis of the SURE program. Both the theory and the proof 
have been subjected to substantial peer review. Specifically, the theory has been reviewed by 
several mathematicians and has been published in a journal (ref. 6); no flaws have yet been 
found. Thus, the bounding theory in SURE has been adequately proven correct on a theoretical 
level. 

This report gives the results of the first attempt to independently test the SURE program 
to demonstrate that the bounds are correctly coded. Two major studies were conducted 
on version 5.2 of the SURE program. First, SURE’s bounds were compared with exact 
analytic solutions for simple semi-Markov models. Second, SURE’s bounds were compared 
with estimates from other reliability analysis tools (CARE 111, ARIES, PAWS, and STEM 
(Scaled Taylor Exponential Matrix)) for more complex models for which analytic derivation of 
the exact solution is largely infeasible. And finally, the mathematical bounds were analyzed to 
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SURE differs from some of the latest reliability analysis tools in that its mathematics has all been rigorously 
proven. 



determine the relative difference in the bounds for models that are pure death processes and 
models with renewal. 

Approach to Testing SURE 

Since no formal methodology exists for thoroughly testing a reliability analysis tool such 
as SURE, one needs to examine those attributes of the tool that are most important to the 
user and important with respect to the application for which the tool is intended. The SURE 
tool was designed primarily to assess fault-tolerant computer architectures whose applications 
usually require high reliability. Hence, the validity of the tool itself must be established. That 
is, there must be a high degree of confidence that the true unreliability of a semi-Markov model 
of a system falls between the bounds given by SURE. This immediately raises two questions: 
(1) what approach can be used to test that the SURE bounds encompass the true unreliability 
of any system modeled with a semi-Markov model, and (2) how do you measure how much 
confidence you have in a tool? 

Since there are an infinite number of possible semi-Markov models, SURE cannot be tested 
with every model. Exhaustive testing would require that SURE be tested with all models 
that represent fault-tolerant systems. Again, this is impossible. The approach chosen for 
this analysis was to test SURE with a number of models that represent constructions used in 
modeling fault-tolerant systems starting with elementary building blocks and progressing to 
large, complex models. As more models are used to test SURE and SURE produces accurate 
bounds for these models, confidence increases in the validity of the program. 

To know for certain that SURE’s bounds contain the true unreliability of a modeled system, 
one must know the true unreliability of that system. Deriving the analytic solution for 
unreliability is virtually impossible for most models. For those models whose analytic solution 
cannot readily be obtained, other reliability analysis tools (CARE 111, PAWS, ARIES, and 
STEM) can be used. These tools use a variety of approaches to estimating reliability and can 
be used to get a ‘Lbest estimate” of the unreliability, which is generally taken as the majority 
consensus among the reliability tools. Comparing this best estimate with SURE’s bounds would 
then give confidence that SURE’s bounds are correct, although it would not guarantee that 
SURE’s bounds are correct. 

Thirty-five models that range from basic constructions to complex models of fault-tolerant 
architectures were chosen to test SURE. Fifteen simple models were selected to be solved 
analytically, and twenty more complex models that are pure Markov models were chosen 
to be solved by other reliability analysis programs to compare with SURE. Figure 1 shows 
the relationship of the models that were chosen for testing to the domain of semi-Markov 
models. Most existing reliability analysis tools are designed to evaluate pure Markov models, 
which are a subset of semi-Markov models. Since Markov models only allow exponentially 
distributed transitions, Markov models are more restrictive than semi-Markov models, which 
allow transitions with any statistical distribution. The CARE I11 program does allow the 
user to specify nonconstant transition rates; however, the mathematics underlying this semi- 
Markov part of the program has not been rigorously proven. ARIES, PAWS, and STEM are 
strictly Markov solvers. Hence, deriving the analytic solutions for simple semi-Markov models 
is currently the only practical means of testing SURE’s bounds for semi-Markov models. 

Besides selecting an appropriate set of models to test SURE, the program can be stress 
tested by choice of the parameter values for each model. In general, for fault-tolerant systems 
the fault-arrival rate is expected to be slow, that is, from to faults per hour, and 
the range for the fault-recovery rate is expected to be fast, that is, from lo3 to lo5 recoveries 
per hour. To stress the program, the fault-arrival rates used in the test cases range from 1 to 
loa8 faults per hour, and the fault-recovery rates range from to lo8 recoveries per hour. 
Again, exhaustive testing of every combination of parameter values is impossible. The following 
combinations of parameter values were often chosen since they are thought to be fairly extreme 
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< Domain of semi-Markov models 

Figure 1. Relationship of test models to the domain of semi-Markov models. 

cases that might show weaknesses in the program: fast fault-arrival rates, slow fault-recovery 
rates, fast fault-arrival rates with slow recovery rates, fast fault-arrival rates with very fast 
recovery rates, and very slow fault-arrival rates with very fast recovery rates. 

The second question dealing with measurement of user confidence in a tool is more difficult 
to address. Since one cannot exhaustively test the program and there is no capability to prove 
code of the complexity of SURE, one cannot conclude after any amount of testing that there is 
100-percent confidence that SURE’S bounds are correct. Confidence in such a program can be 
measured only from a relative standpoint. As stated earlier, the entire mathematical basis for 
SURE has been rigorously proven. This fact, in itself, lends much confidence to the correctness 
of the bounds implemented in the program. The test cases presented in this report along with 
the analysis of the relative error in the bounds further increase user confidence in SURE. 

SURE Program and Computing Exact Unreliability From a Model 

In a Markov model of a fault-tolerant system, the unreliability of the system is calculated 
as the sum of all death-state probabilities in the model. A death state in a Markov model is 
a state that has no exiting transitions; that is, an absorbing state. In relation to a computer 
system, a death state often represents the system’s failure. Each death-state probability can 
be determined by individually looking at each path in the model that leads to that death state. 
The exact death-state probabilities of a semi-Markov model are determined mathematically 
by solving a series of convolution integrals. The number of convolution integrals increases as 
the size of the model increases; thus finding an exact solution for a large model is essentially 
impossible. Because of the difficulty of solving convolution integrals, the models in this first 
phase of testing were limited to five states. 

To calculate a death-state probability, each path that leads to that death state can be 
analyzed transition by transition. In a pure Markov model, the transitions between states are 
all exponentially distributed. However, in a semi-Markov model, transitions between states 
can be described by any statistical distribution. For this work, transition rates were limited 
to distributions that are mathematically tractable, namely, the exponential, uniform, and 
impulse distributions. 

Review of SURE Mathematics 

In SURE, the unreliability of a semi-Markov model is computed by analyzing each possible 
path through the model from the model’s initial, no-failure state to termination at some death 
state. Since global time independence is an inherent property of a semi-Markov model, the 
states of the model can be rearranged to facilitate estimation without changing the numerical 
result. The SURE program assesses 
the unreliability by arranging the path steps of the entered model into three different path 
classifications. 

The mathematics of SURE employs this strategy. 
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The paths are classified on the basis of whether the relative rates of the transitions between 
each of the states are slow or fast. Slow transition rates correspond to fault arrivals in a 
computer system and are assumed to be exponentially distributed in the program. Fast rates 
describe the system’s response to faults and can be characterized by any distribution given 
the distribution’s mean and variance. The slow transitions are denoted in the models by a 
lowercase Greek character (A, 7, E, 6, a,  and p) representing the rate; the general transitions 
are denoted by a capital letter (F, G, and H) that represents a particular distribution. 

A path step consists of a state and each of the transitions leaving it. For a particular 
path through a model, the transitions directly on the path being analyzed are called the on- 
path transitions and the remaining transitions are referred to as off-path. For any given path 
step, there can be only one on-path transition; but, there can be arbitrarily many off-path 
transitions. To illustrate the concept of on- and off-path transitions, consider the model in 
figure 2. In this model there are two possible paths that lead to state 6: 1 --+ 2 -, 3 -, 5 -, 6 
and 1 -, 2 -, 4 + 5 -, 6. Consider the path 1 -, 2 -+ 4 -, 5 -, 6. The on-path transitions in 
this path are the transitions between states 1 and 2, 2 and 4, 4 and 5, and 5 and 6. The 
transition between states 2 and 3 is an off-path transition from state 2. 

2 h  h 

Figure 2. Markov model for demonstration of on- and off-path transitions. 

Three path-step classifications based on the state transition rates are used in SURE. These 
are (1)  slow on-path, slow off-path, (2) fast on-path, arbitrary off-path, and (3) slow on- 
path, fast off-path. Figures 3, 4, and 5 are examples of the path-step classifications given in 
reference 3. 

I 

1 
Figure 3. Class 1 path step: slow on-path, slow off-path transitions. 

In figure 3, A i  represents the rate of the on-path transition from state i, and 7i represents 
the sum of all the slow off-path transitions from state i. No fast off-path transitions are allowed 
in the class 1 category. In figure 4, Fi ,k  where k = 1, 2, ..., ni represents the kth fast transition 
from state i, and ni represents the number of fast transitions leaving state i. The sum of all the 
slow transitions leaving state is given by ci . In SURE, three parameters must be specified for 
each general transition. The first two parameters for the class 2 path step are the conditional 
mean P ( F ; ~ )  and conditional variance cr2(Fck), given that the general transition Fi ,k  occurs. 



The third parameter is the transition probability p(F<k), the probability that the transition 
from state i to k occurs. The following equations define these parameters: 

Figure 4. Class 2 path step: fast on-path, arbitrary off-path transitions. 

where t is time. 

In the class 3 category in figure 5, the on-path transition aj is slow as in class 1; but, there 
are also nj fast off-path transitions leaving state j represented by Gj,k where k = 1, 2, ..., nj. 
Slow off-path transitions may or may not be present. As in the other path classifications, all 

Figure 5. Class 3 path step: slow on-path, fast off-path transitions. 

the slow off-path transitions are represented by a sum, given by /?j. The parameters needed to 
describe the general transitions in this path step are defined in the same manner as those for 
the class 2 path step: 
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The three path steps are each combined to form paths as shown in figure 6, where each path 
step in each path is of the same type. These paths can then be combined to form a general 
path. 

n :  n\ 

Figure 6. General path consisting of the three path-step classifications. 

In figure 6, the path steps from Ak are class 1, those from B, are class 2, those from Cn are 
class 3, and state D represents a death state, a state from which there are no exiting transitions. 
The unreliability of the modeled system at time T is the sum of the probabilities of being in 
each of the death states at T .  The probability of being in a death state at the e n d s f  each 
of the above path classifications, denoted Pi(T) where i = 1, 2, or 3 for each classification, is 
defined as follows: 
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To compute the death-state probability from a path that contains a combination of classifica- 
tions, the integrals are simply combined as in White’s synthetic bounds (ref. 4, pp. 7-8). Using 
-these formulas, one can calculate the unreliability of a simple semi-Markov model. 

Comparison of SURE With Analytic Solutions-Phase I 
During the first phase in the testing of SURE, the bounds developed by White (ref. 4) 

were examined. Since the exact unreliability can be determined for a very simple semi-Markov 
model of a system, the first step in testing the accuracy of SURE was to compare SURE’s 
bounds using version 5.2 of the program with exact solutions. For this phase of testing, 15 
very simple semi-Markov models were constructed, and the exact unreliability was analytically 
derived for each. Each model was then run several times, each time varying the value of the 
parameters of the model in order to stress the program and identify parameter ranges where 
the bounds separate or the program fails. A series of test cases, each consisting of the exact 
solution, SURE’s bounds, and a relative difference estimate, are presented for each model. 

The relative difference estimate, denoted RD, given for the bounds is defined as follows: 

[SURE bound furthest from exact solution - Exact solution1 
Exact solution 

RD = 

This difference estimate gives a measure of the tightness of the bounds. The unreliability 
estimate given by SURE is more precisely expressed when the bounds are tight. A small 
relative difference indicates tight bounds. Correspondingly, a large relative difference indicates 
a wide spread in the bounds. The acceptable degree of tightness in the bounds is measured by 
engineering judgment that is based on the needs of the user and the intended application. 

Appendix A contains the results of this testing. For each example, the model is given along 
with the equations for the exact death-state probabilities. Equations for p,  02, and p are 
given for models with nonexponential transition rates. The correctness of these equations was 
checked with MACSYMA (ref. 7), a computer programming system developed at Massachusetts 
Institute of Technology. MACSYMA applies a symbolic manipulation approach to processing 
mathematical expressions. A table that compares the exact solutions with the SURE bounds 
for a range of parameter values accompanies each model. 

The SURE program does not require the user to specify units when inputting the model’s 
transition parameters. Since reliability is measured with respect to a specified length of time 
T, referred to here as “mission time,” the user must be consistent in the specification of the 
mission time and transition rates. For example, if the reliability of a model for a 10-hour 
mission is desired, then each of the transition rates should be given in terms of hours. For 
all cases reported in this study, the mission time default of 10 hours, that is, T=10, was used 
unless specified otherwise. To be consistent, the unit of measure for all the transition rates is 
assumed to be hour-’. 

Because of numerical stability problems, a few of the analytic solutions were calculated 
using Taylor series expansion techniques. Since the SURE bounds are given in six significant 
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digits, the exact solutions were also rounded off to six significant digits. All warning and error 
messages that were output by the SURE program when each case was run are noted at the 
bottom of the appropriate table and are explained in the discussion of the results. 

Although the test cases shown in appendix A were elementary, they do represent basic 
constructions used in modeling fault-tolerant computer systems. For all these test cases, the 
exact unreliability for a given model was always enclosed by SURE’S bounds. In most of the 
cases, the upper bound was much closer to the exact solution than the lower bound. When 
estimating the unreliability of a computer used in life-critical applications, having a conservative 
estimate of the unreliability is important. Since the upper bound is a conservative estimate, 
the upper bound serves as a good estimator of the unreliability for most of the cases examined. 
In general, the bounds were also very tight. The relative difference was less than 5 percent in 
71 percent of the cases and even less than 1 percent in many of these cases. 

There were, however, certain parameter values that caused the bounds to separate; in a 
few cases, the bounds would not even provide a useful estimate of unreliability. The wide 
bounds can largely be attributed to general transition rates that are slow with respect to the 
mission time, that is, slow fault-recovery rates. The general transition rates that cause bound 
separation can be characterized by looking at the mean of the general transition distribution 
and the mission time. When the product of the mean of the general transition and the mission 
time is greater than 5, the bounds tend to separate significantly; that is, the relative difference 
is usually greater than 5 percent. When this product is greater than 30, a warning message 
“RECOVERY TOO SLOW” is output by SURE. SURE also warns the user if the mean of the 
general transition is greater than the mission time by issuing the message “DELTA > TIME.” 

Separation of the bounds also occurred when a fast exponential rate was expressed as a 
slow transition. When a slow exponential rate was greater than or equal to O.Ol/hour, that 
is, the fault-arrival rate was fast, there tended to be a moderate separation of the bounds. 
The test cases for examples 4a and 4b in appendix A demonstrated the effect of describing a 
fast exponential transition with the construct for a slow transition. To yield tighter bounds, 
fast exponential transitions must be specified as general transitions with mean and standard 
deviation. The warning messages “RATE TOO FAST” and “DELTA > TIME” were output 
when fast transitions were not correctly specified. 

As mentioned earlier, the user must decide based on the intended application whether or not 
the bounds given by SURE are tight enough to meet the application’s requirements. One should 
keep in mind when using SURE that the mathematics implemented in the program was designed 
to solve semi-Markov models that describe the failure behavior of highly reliable, reconfigurable, 
fault-tolerant systems which exhibit slow fault-arrival rates and very fast recovery rates. The 
fast fault-arrival rates and slow fault-recovery rates that induced the separated bounds are not 
consistent with such systems. Separation of the bounds is also demonstrated in the second 
phase of testing where model complexity precludes use of analytic solutions. In these more 
complex cases, the SURE program is found to be well behaved as its application limits are 
approached. In the second phase, described in the next section, more complex models and 
models that represent actual fault-tolerant architectures are used to test the SURE program. 

Comparison of SURE With Other Reliability Analysis Tools-Phase I1 

The next step in the investigation concentrated on testing the program with more complex 
models and models that represent actual fault-tolerant computer systems. To estimate the 
reliability of state-of-the-art fault-tolerant architectures, tools such as ARIES, CARE 111, 
PAWS, and STEM have been developed. These programs are described in more detail in 
the following paragraphs. In general, these tools apply different numerical, aggregation, and 
decomposition techniques to estimate the reliability from a model of a given system. Since 
these tools were developed to assess fault-tolerant systems where reliability is a key issue, the 
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estimates for reliability should be conservative. Although comparison of SURE’s bounds with 
these estimates does not guarantee that the bounds actually envelop the exact unreliability, 
this comparison at least offers the user a sense of confidence in SURE’s bounds. 

Description of CARE 111, ARIES, PAWS, and STEM 

The CARE I11 reliability analysis tool uses a solution technique that applies behavioral 
decomposition and aggregation methods to evaluate the reliability of fault-tolerant computer 
systems (ref. 8). The solution technique assumes that fault occurrence is a relatively infrequent 
(low-rate) event, and fault-handling behavior is composed of relatively frequent (high-rate) 
events. CARE I11 reduces the solution of a complex model to the solution of two relatively 
simpler models: a coverage model that is a semi-Markov process and a reliability model that 
is a nonhomogeneous, Markov process (ref. 9). Numerical integration techniques are then 
used to solve these Markov models. The solution technique involves an approximation that 
is not characterized via a mathematical error analysis. Fault trees are used to describe the 
fault-occurrence behavior, and the fault-handling behavior is described by the parameters of 
the semi-Markov model. The CARE I11 program was originally developed at the Raytheon 
Company and has since been modified and enhanced. Version 6 of the program was used for 
this investigation. 

The ARIES program (ref. 10) evaluates the reliability of systems that are defined as 
homogeneous Markov processes. This program was developed at the University of California 
at Los Angeles as an interactive reliability modeling tool. A decomposition technique is 
implemented in ARIES in the sense that the system being analyzed is defined as a series 
of subsystems where each subsystem is separately analyzed. By approximating fault-handling 
states with instantaneous coverage, the state size of systems is also reduced. The ARIES 
program incorporates six models that can describe closed, repairable, and renewable systems. 
ARIES does not provide a comprehensive error analysis with its reliability estimates. For 
examples 29 through 35, the ARIES 82 version was used. 

The PAWS program, which was developed at NASA Langley Research Center, is used to 
compute the reliability of a pure Markov model. The reliability of a system modeled with a 
pure Markov model can be determined by solving a system of differential equations. PAWS uses 
a combination of Pad6 approximations, scaling, and squaring techniques to compute a matrix 
exponential needed to solve this system of equations and, hence, determine the death-state 
probabilities of a Markov model. This method of finding the matrix exponential is considered 
one of the most efficient algorithms known (ref. 11). A conservative estimate of the number 
of digits of accuracy in the unreliability estimate is also given along with the death-state 
probabilities. PAWS is limited, though, to pure Markov models and cannot handle very large 
models (models with more than 300 states). Enumeration of each state transition is needed for 
PAWS, and PAWS uses the same input format as SURE. 

Another reliability analysis tool called STEM, which was also developed at NASA Langley 
Research Center, does have the capability to compute the exact death-state probabilities for 
Markov models with up to 1000 states. The underlying mathematics in STEM involves the 
calculation of the matrix exponential, which is defined via a Taylor series (refs. 12 and 13). The 
Taylor series is truncated in the program, and a conservative error estimate of the truncation 
is produced. The STEM program uses the same input language as SURE and outputs the 
death-state probabilities along with the error estimate. 

Description of Models for Phase I1 

During the second phase of the testing, SURE’s bounds were compared with unreliability 
estimates given by CARE 111, PAWS, STEM, and ARIES for a set of models. Since most of the 
reliability analysis tools apply only to pure Markov processes, only models with exponential 
transitions were considered. The models used in this phase of testing exhibit more complex 
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constructs than the models in the first phase. Some of the models include permanent, transient, 
and intermit tent faults . 

Models with renewal (transient or intermittent faults) have an infinite number of paths of 
increasing lengths leading to death states. Such a model is shown in figure 7, where 7 is the 
transient-fault-disappearance rate and a and ,B are intermittent-fault rates. Theoretically, an 
infinite number of paths would have to be analyzed to compute the bounds. However, as a 
path grows longer, the probability of entering a death state diminishes. For any long path, 
there is generally a point along that path where the contribution to the overall unreliability 
of the modeled system becomes insignificant. Truncation and pruning techniques can then be 
implemented to analyze renewal models. 

2h h 

Y I \‘ 

Figure 7. Renewal model with transient and intermittent faults. 

With the truncation feature implemented in SURE, the number of times a loop is unfolded 
can be specified. The pruning feature allows a value to be specified so that processing of the 
path stops once the probability of going down that path drops below the designated value. 
Upper bounds on the error introduced by truncation and pruning are given in SURE’S output. 
Thus, a model that actually contains an infinite number of paths can be analyzed as if it has 
a finite number of paths. Use of the truncation and pruning techniques allows White’s bounds 
to be applied to models with renewal. A more detailed discussion of truncation and pruning 
can be found in reference 3. 

The models used in this phase of testing are found in appendix B. Twenty models were 
considered, and these were divided into two sets. The models in the first set, examples 16 
to 28, are still fairly simple models compared with the complexity of most real fault-tolerant 
systems. These models ranged in size from 5 to 450 states. Although several of the models 
are relatively simplistic, they do represent realistic models of fault-tolerant architectures. The 
SURE program was run for each of these models and compared with estimates from CARE I11 
(where it applied), PAWS, and STEM (in one case with a particularly large model). The 
Markov model, or part of the model, is given for each example followed by a table that shows 
each tool’s unreliability estimates. 

All the default run-time parameters of the CARE I11 program were used unless otherwise 
noted. Some of the systems could not be directly modeled with CARE 111, and these situations 
are noted where appropriate. In particular, CARE I11 cannot directly model systems that 
consider critical-triple faults or cold spares. It should also be noted that the CARE I11 user’s 
guide warns against using some of the parameter values that are found in some of the following 
test cases. These restrictions are explained in greater detail where they apply. 

The last set of models, examples 29 through 35 located in appendix C, was taken from 
reference 14. This report describes a comparative analysis between the ARIES and CARE I11 
tools designed to show the strengths and weaknesses of each tool for analyzing architectures for 
fault-tolerant aerospace systems. In the report, seven simple reliability models were analyzed 
with ARIES and CARE 111 and compared with a direct calculation of the unreliability of the 
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modeled system. The SURE program was run for each of these models, and SURE’s bounds are 
given in appendix C along with the corresponding results from ARIES, CARE 111, and a direct 
calculation of the unreliability. (The direct calculations and analytic approximations shown in 
this report are accurate calculations of the unreliability of the modeled system. Some of the 
direct calculations given in reference 14 are not correct. The ARIES and CARE I11 programs 
were not run again to check that the results in the reference were accurate.) 

Summary of Results of Phase I1 Testing 
During the second phase of testing the accuracy of SURE’s bounds, no cases were found 

where the final bounds given by SURE did not cover the best estimates of the unreliability of the 
modeled systems. As seen during the first phase, the upper bound was usually a much better 
estimator of the unreliability than the lower bound. In most cases considered in this phase, 
the bounds on the total unreliability were extremely tight. In fact, the bounds in each of the 
cases agreed with the best estimate in the order of magnitude of the total system’s unreliability. 
There were a small number of cases, however, where the bounds were significantly separated. 

Separation of the bounds occurred when the fault-arrival rate was relatively fast with respect 
to the mission time or the fault-recovery rate was relatively slow. These rates are not typical of 
highly reliable, fault-tolerant computer systems. The separation of the bounds in these cases 
was also not as severe as in the cases where nonexponential transitions were used. That is, the 
bounds seem to be tighter for models of pure Markov processes than semi-Markov processes. 

Separation of the bounds was also more apparent for models with transient and intermittent 
faults. As mentioned previously, White’s bounds were not explicitly designed for models with 
renewal. In the models where only permanent and transient faults were present, the bounds 
tended to converge quickly. In only a few cases was a truncation level of more than three 
required to yield good bounds. If the truncation level was set small enough that the bounds 
had not converged sufficiently, a “TRUNC TOO SMALL” warning message was issued. In such 
cases, the model should be run again with a higher truncation level until the warning message 
disappears. 

For the models with intermittent faults, however, both truncation and pruning were 
necessary in some of the cases to produce good bounds. As in the case of truncation, if 
the pruning level was set too large to ensure correct bounds, a “PRUNING TOO SEVERE” 
message was issued. When this warning message was issued, the bounds did not necessarily 
envelop the true unreliability of the modeled system; and the model was run again with a new 
pruning level until the warning disappeared. 

There were a few cases where pruning was used and the sum of the pruned states’ probability 
was significantly larger than the true unreliability. This sum was given as part of SURE’s output 
so that the user could be aware of the error caused by pruning; however, no warning message 
was given to draw the user’s attention to the fact that the bounds may not be accurate. When 
this sum is larger than, or within a couple of orders of magnitude of, the given bounds, the 
bounds may not enclose the true unreliability because of the error caused by pruning. Thus, 
when the prune feature is used, the user should be mindful of the value given at the bottom of 
SURE’s output that gives an upper bound on the sum of the pruned states’ probability. If this 
sum is within a couple of orders of magnitude of the bounds currently given, the model should 
be run with a smaller prune value to ensure sufficient convergence of the bounds. 

In the following section, the relative errors in the bounds for models with intermittent and 
transient faults are derived. These error estimates help demonstrate the rate of convergence of 
the bounds in these cases. 

Analysis of SURE’s Mathematical Bounds-Phase I11 
While SURE was being exercised with various models, no cases were found where SURE’s 

final bounds did not contain the unreliability for any model tested. However, there were cases 
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in which the bounds were so widely separated that they were essentially useless for describing 
the unreliability of a system. During this phase in the investigation of the validity of SURE's 
bounds, we look at the algebraic bounds themselves to discern those parameter values that cause 
the bounds to separate. To do this, relative error estimates for three different types of models 
were considered: (1) models of pure death processes, (2) models with transient faults, and 
(3) models with intermittent faults. 

i Error Analysis for General Model 

I The mathematical bounds developed by White were examined to determine a relative error 
estimate in the bounds for models t,hat, are pure death processes and for models that are 
renewal processes. White's bounds were originally intended for pure death processes. For 
a pure death process, the exact difference between SURE's upper and lower bounds can be 
determined. A sensitivity analysis of the relative error in pure death cases can show those 
parameters that lead to separation in the bounds. From White's multiple recovery theorem, 
the upper bound, denoted UB, and the lower bound, denoted LB, for the unreliability of a semi- 
Markov model are given as follows (for notation, refer back to figs. 3-5 on path classification):2 

i= 1 j=1 

for all values of ri > 0 and s j  > 0, where m is the number of general transitions in the class 2 
path step, n is the number in the class 3 path step, and 

where Q(T) is the probability of traversing a path consisting of only the class 1 path steps 
within time T .  The following are lower and upper bounds on Q(T) that are implemented in 
SURE: 

where k is thc number of class 1 path steps, S = {ZIXiT < l}, and IS1 is the cardinality of the 
set, S. In the SURE prograni, ri and sj default to the following values: 

The  quantities p ( H J )  and 0 2 ( H J )  in the equations for UB and LB refer t o  a holding-time distribution. 
Details of calculating these parameters are not relevant t o  the  error calculations and are omitted but can be  
found in ref. 3. 
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In reference 3, Butler shows that these values of ri and s j  are nearly optimal in that they have 
been found to give very close bounds in most cases. 

To study the sensitivity of the bounds to the parameter values, consider the relative error 
estimate RE where RE = (UB - LB)/UB. Substituting the previous expressions for UB and 
LB as shown above and simplifying gives 

To simplify this expression even further, define the variables zi and yj as 

& H j )  + 0 2 ( H j )  - $ ( H i )  + 2 ( H j )  

s j  2 Y j  = 4 H j )  - (ayj + P j )  

From these expressions and the upper and lower bounds on Q ( T ) ,  RE can be rewritten as 

T' ri p ( H j )  
j = 1  

Since one would expect the parameters Xi ,  ~ i ,  aj ,  and Pj to be on the order of 10-4/hour and 
p and u to be on the order of hour in a fault-tolerant computer system, the relative error 
should be small. In reference 3 ,  Butler gives kA/T as an approximation for this relative error. 
This approximation is fairly accurate when compared with the exact relative error; however, 
in most cases kA/T is not a conservative estimate of the relative error. This approximation is 
especially poor when T is large since kA/T decreases as T increases, while RE increases as T 
increases. 

By examining the relative error, particular ranges of the parameter values become evident 
which cause the bounds to separate. The relative error tends to increase significantly as the 
mission time T increases, especially as T increases relative to A. Large values of A, as were 
seen in all t,he test cases, also cause the bounds to separate significantly. In particular, the 
combination of a large mission time with a fast fault-arrival rate causes severe separation in 
the bounds. Slow recovery times ( p  large) also cause an increase in the relative error. The 
relative error is also sensitive to the standard deviation u being larger than the mean p. The 
relative error increases as u increases with respect to p. The parameters E, " ,  and seem to 
affect the relative error very little. 
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When the parameter values are small (less than though, the relative error is generally 
small. Thus, the bounds should be relatively tight for models of pure death processes when 
the parameter values reflect those of a fault-tolerant system-slow fault-arrival rates and fast 
fault-recovery rates. 

By applying model-truncation and model-pruning techniques, White's theorem can also 
be applied to models that contain renewal processes. The relative error in the bounds for 
models with renewal, however, can only be estimated; but a conservative estimate can be 
found. Through this relative error estimate, the convergence of models with transient and 
intermittent faults can be shown. 

Error Analysis for Transient-Fault Model 

First consider the model in figure 8 that allows for transient faults in the modeled system. 

Figure 8. Semi-Markov model with transient faults. 

The probability of being in state 3 at time T after N passes through the loop is given by Pt(T) 
where 

The exact probability of being in state 3 at time T is 

If p(F)XT is small (this quantity should be small especially for short mission times), then 
the quantity P ( F ) ( X T ) ~ + ' / ( N  + l)! approaches 0 very quickly as N increases. So, a good 
approximation for P3(T)  can be obtained when p(F)AT is small with only a few passes through 
the loop. The exact error involved in truncating the path after N passes through the loop is 
given by 

From Taylor's theorem, 

So, the percentage error %EN in the bounds due to truncating a path after N passes through 
the loop is defined as follows: 
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Thus, %EN x { e P ( F ) X T [ p ( F ) X T ] N + l / ( N  + 2)!} 100% for p(F)XT small. This expression for the error 
vividly shows that the tightness of the bounds for models with transient faults heavily depends 
on the parameters p ( F ) , X ,  and T. Table 1 gives the approximate percentage error in the 
bounds for a renewal model with transient faults for a range of values of p(F)XT and N.  As 
seen in this table, the error involved in truncating a path as in figure 8 after N passes through 
the loop is generally very small. When the mission time is large or the fault-arrival rate is 
particularly fast, SURE’s truncation parameter should be increased. (Note that the SURE 
program defaults to three passes through a loop.) 

N = 2  

Table 1. Percentage Error in SURE’s Bounds for 
Transient-Fault Models 

N = 3  P(F)XT 
0.9 

.5 

.I  

.01 

.001 

.0001 

.00001 

Percentage error in SURE’s bounds 

7.471 
8.587 x 10-1 
4.605 x 
4.208 x 
4.171 x 
4.167 x 
4.167 x 

1.345 
8.587 x 
9.210 x 
8.417 x 

8.334 x 
8.334 x 

8.342 x 10-l~ 

N = 5  
2.594 x 
5.111 x 
2.193 x 
2.004 x 
1.986 x 
1.984 x 
1.984 x 

N = 10 
2.127 x 
2.218 x lo-’ 
3.046 x 
2.783 x 
2.758 x 

2.756 x 
2.756 x 10-49 

Error Analysis for Intermittent-Fault Model 
Now, consider a path from a model that contains intermittent faults as in figure 9. An 

intermittent fault can fluctuate between an active and nonactive state, and Q(t )  represents the 
holding time in the benign state which is state 5 in the model. From White’s upper bound the 
probability of being in state 3 at time T is given as 

h 

Q 

Figure 9. Semi-Markov model with intermittent faults. 

And the probability of being in state 3 after N passes through the loop is 

PP(T)  = QXP(H2)TPN(F) 
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The error in truncating the loop in figure 9 after N passes is 

2 = 5% 
1 
2 
2 
3 
3 
5 
8 

13 
32 

302 
2998 

29959 

From this equation, the rate of convergence of P3(T) obviously heavily depends on p ( F ) .  To 
demonstrate this dependence, suppose that both the F and G transitions are fast exponentials 
so that p ( F )  = p ( G ) / [ p ( F )  + p(G)] .  Then, the percentage error in truncating after N passes 
through the loop can be expressed as 

2 = 10% 
1 
1 
2 
2 
3 
4 
6 

11 
25 

232 
2304 

23028 

% E N = -  p3 EN (TI 100% = p(F)N+llOo% = [ p ( $ y L ( G ) ]  N-tl loo’ 

For p(G)  > p ( F ) ,  many iterations of the loop, that is, large N ,  may be needed in order to 
reduce %EN to a desirable level. If N* is defined to be the minimum number of iterations 
through the loop needed to assure an 2% error in the bounds, then 

In( x%/lOO) 
W ( G ) / [ P ( F )  + P(G)1) 

N *  = 

Table 2 shows the approximate number of iterations through a loop as shown in figure 9 
needed to guarantee a given percentage error in SURE’s bounds. As demonstrated in this table, 
only a small number of iterations through the loop in the intermittent model are required to 
assure a small relative error in the bounds when p ( F )  is larger than p(G). A 5-percent error in 
the bounds where p ( F )  x E ~ ( G )  and E approaches 0 requires N *  x [-ln(x%/100)]/~ to make 
certain that the upper bound has adequately converged. In these cases, the user should try 
several values of the truncation parameter to make certain that the bounds have sufficiently 
converged. 

Table 2. Sensitivity of SURE’s Bounds to the Transition 
Probabilities of the General Transitions in an 

Intermittent-Fault Model 

Ratio of the means of 
the general transitions 

F and G 

Overall, the relative error in the 

- 
Minimum number of iterations 

to guarantee 2% error in 

x = 1% 
1 
2 
3 
4 
5 
7 

12 
21 
49 

463 
4608 

46055 

bounds is generally small. The relative error is par- 
ticularly small when the parameters are in the range of those for highly reliable, fault- 
tolerant systems--that is, the fault-arrival rates are slow and the recovery rates are fast. 
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For transient faults, the bounds tend to  converge quickly, so only small values for the trun- 
cation parameter are usually needed. For intermittent faults, the user should make judi- 
cious use of both the truncation and the pruning features to ensure that the bounds have 
adequately converged. The user should always be conscious of the sum of the probabil- 
ities of being in the pruned states to make sure that this quantity is not larger than the 
unreliability given in the bounds. 

Concluding Remarks 
Throughout this investigation of SURE’s bounds, no cases were found where SURE’s bounds 

did not envelop the exact unreliability or the best estimate of unreliability for any model tested. 
In general, the upper bound provided a very good estimate of the unreliability. For a few cases, 
the bounds were substantially separated; these cases had either fast fault-arrival rates or slow 
fault-recovery rates not typical of fault-tolerant computer systems. With judicious use of the 
truncation and pruning features, SURE produced good bounds for models with transient and 
intermittent faults. Overall, the SURE program provides a very good estimate in the form of 
lower and upper bounds of the unreliability of a semi-Markov model of a system. 

In general, the program is very easy to use. SURE’s input language is simple and direct 
and does not require the user to define parameters that are ambiguous or unmeasurable. 
The warning and error messages output by the program were helpful in determining the 
source of modeling and syntax problems. However, when truncation and pruning were used 
simultaneously, more attention should to be drawn to the sum of the probabilities of being 
in the pruned states. No cases were encountered where erroneous inputs were given which 
the program failed to catch and warn the user. The output is a concise and comprehensible 
presentation of the desired death-state probabilities of the model along with an error estimate. 

The results of this study should give users of SURE confidence in the accuracy of SURE’s 
bounds. Although many different models and test cases were used in this study, only the basic 
features of the program were analyzed. Testing every feature of the program is needed to build 
more confidence in SURE. All the features that were not considered in this study, such as the 
FAST, AUTOFAST, and ORPROB commands (ref. 3), need to be exercised over a range of 
models and parameter values. Beyond stress testing each of SURE’s features, the program 
also needs to be tested to see whether a user could input an erroneous model without getting 
any warnings, or, in general, if any unacceptable input could be entered without the program 
adequately warning the user. 

NASA Langley Research Center 
Hampton, Virginia 23665-5225 
April 22, 1988 
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Appendix A 

Comparison of SURE With Analytic Solutions 

Example 1 
The first example is a three-state semi-Markov model representing two competing uniform 

transitions. The distributions F and G are defined as follows: 

t / a  ( t  I a) 

1 ( t  > a )  
F ( t )  = 

t / b  ( t  5 b)  
1 ( t  > b)  

G ( t )  = 

where a 5 b 5 T. This first example is described in terms of the path-step classifications to help 
illustrate the connection between the equations given in the examples and the mathematics in 
the main body of the paper. In this example, both state 1 and state 2 are death states with a 
single path step leading to each state. The path from states 0 to 1 consists of a fast on-path 
transition with a fast off-path transition; hence, this is a class 2 path step. Similarly, the path 
from states 0 to 2 is also a class 2 path step. 

Example 1: Three-state model with competing uniform transitions. 

The following equations define the statistics needed to describe the general transitions F 
and G as class 2 paths for example 1: 

t 1  a 
p(F*) = Sm[l - G ( t ) ]  dF( t )  = la ( 1  - i) clt = 1 - - 

0 0 2b 

3ab - 2a2 
t [ l  - G(t ) ]  d F ( t )  = - 2b 2b - a [ t ( l - ; ) : d t =  6 b  - 3a 

2b la t2 ( 1  - i) 1 dt - p 2 ( F * )  a 2 ( F * )  = -1 t2[1 - G ( t ) ]  dF( t )  - p 2 ( F * )  = - 1 m  
P(F*) 0 2 b - a  0 b a  

- 6a2b2 - 6a3b + a4 
72b2 - 72ab + 18a2 

- 

a 1 - t / a  a 
2b 

dt = - p(G*) = lm[l - F ( t ) ]  dG(t)  = 1 7 
0 

m t [ l - F ( t ) ] d G ( t ) = ~ / a ~ ( l - ~ )  d t = 3  a 
a o b  a 

2b a t2 t 2 a2 ( 1  - -) dt - p (G*) = - 
18 

Irn t2[1 - F ( t ) ]  dG(t)  - p2(G*)  = - 1 o2(G*) = - 
0 a 0  a 
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The following equations define the death-state probabilities for states 1 and 2 in example 1. 
The equations for D1(T)  and D2(T) relate to P2(T),  the probability of being in a death state 
at the end of a path consisting entirely of class 2 path steps, which is defined in the main text. 

U T t 1  D1(T) = A [l - G(t)]dF(t) = la (1 - 6 )  dt = 1 - - 
0 2b 

U t 1  &(T)  = /'[l - F(t)]dG(t) = la (1 - --) j j  dt = ZT; 
0 0 

Comparison of SURE With Analytic Solutions for Example 1 

Parameters 
a = 1 x 10-6 
b = I x 10-5 

a = 1 x 10-6 
b = 1 x 10-1 

a = 5 x 10-8 

a = 1 x 10-3 

a = 2 x 10-2 

b = 4 x lo-' 

b = 1 x 

b = 1 x 10-1 

a = 1 x 
b = 1 x lo2 

a = 1 x 10-1 
b = 1 x 105 

Example 2 

Death 
states 

Analytic 
solutions 

9.50000 x lo-' 
5.00000 x 

9.99995 x 10-1 
5.00000 x 

1 .ooooo 
2.50000 x 

9.50000 x 10-1 
5.00000 x 

9.00000 x 10-1 
1.00000 x 10-1 

1 .ooooo 
5.00000 x 

1 .ooooo 
5.00000 x 

SURE bounds 
~~~~ ~ 

(9.49991 x 9.50000 x 10-l) 
(4.99996 x 5.00000 x 

(9.99986 x 9.99995 x 10-l) 
(4.99996 x 5.00000 x 

(9.99999 x 10-1, 1.00000) 
(2.50000 x 2.50000 x 

(9.49114 x 9.50000 x 10-l) 
(4.99627 x low2, 5.00000 x 

(8.93878 x 9.00000 x 10-l) 
(9.94497 x 10-2, 1.00000 x 10-1) 

(9.99797 x 10-1, 1.00000) 
(4.99920 x 5.00000 x 

(9.79725 x 1.00000) 
(4.91954 x 5.00000 x loF7) 

RD 
0.001 

.001 

.001 

.001 

. 000 

.ooo 

.093 

.075 

.680 

.550 

.020 

.016 

2.028 
1.609 

The second example is a three-state semi-Markov model representing an impulse distribution 
competing with a uniform transition. The distributions F and G are defined as follows: 

0 (t L a )  
1 (t > a )  

t/b (t I b) 
1 (t > b)  

F(t) = 

G(t) = 

where a 5 b 5 T .  
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Example 2: Three-state model with impulse and uniform transitions. 

The following equations define the statistics needed to describe the general transitions F 
and G for example 2: 

a 
p ( F * )  = / C O [ l  - G ( t ) ] d F ( t )  = 1 - G(a)  = 1 - - 

0 b 

l W  
p ( F * )  = - / t [ l  - G ( t ) ]  d F ( t )  = 

u 2 ( F * )  = - l W  / t2[1 - G ( t ) ]  d F ( t )  - p 2 ( F * )  = -a2 b (1 - %) - p 2 ( F * )  = 0 

P(F*) 0 

P(F*) 0 b - a  

a 1  CO 

p(G*) = / [l - F ( t ) ]  dG(t)  = / - dt = a 
0 o b  b 

l W  b a t  a p (G*)  = po 1 t [ l  - F ( t ) ]  dG(t) = a 1 b d t  = - 
2 

l W  b a t 2  a2 
u2 (G*)  = - / t2[1 - F ( t ) ]  dG(t)  - p2(G*)  = - / - dt - p2(G*)  = - 

P(G*) 0 a 0  b 12 

The following equations define the death-state probabilities for states 1 and 2 in example 2: 

a D1(T) = / [l - G ( t ) ]  d F ( t )  = 1 - G(a)  = 1 - - 
0 b 

a 1  a 
D2(T) = / [l - F ( t ) ]  dG(t)  = / - dt = - 

0 o b  b 

T 

T 



I Comparison of SURE With Analytic Solutions for Example 2 

Parameters 
a = 1 x 10-6 
b = 1 x 10-5 

b = 1 x 10-1 

a = 1 x 10-2 
b = 1 x 10-1 

a = 1 x 

a = 5 x 
b = 2.5 x 

a = 5 x lov7 
b = 1 x 

a = 1 x 1 0 - ~  
b = 1 x io3 

a = 1 x 10-1 
b = 1 x io5 

Death Analytic 
states solutions 
D1(T) 9.00000 x 10-1 
D~(T) i.ooooo x io-1 

&(T) 9.99990 x 10-1 
D~(T) i.ooooo x 1 0 - ~  

&(T) 9.00000 x 10-1 
&(T) 1.00000 x 10-1 

&(T) 9.80000 x 10-1 
&(T) 2.00000 x 

D1(T) 9.99950 x 10-1 
&(T) 5.00000 x 

D ~ ( T )  i.ooooo 
D ~ ( T )  1.0oooo x 

D1(T) 9.99999 x lo-' 
&(T) 1.00000 x 

Example 3 

SURE bounds 
(8.99998 x 9.00000 x 10-l) 

(9.99976 x 9.99990 x 10-l) 

(9.99991 x 10-2, 1.00000 x 10-1) 

(9.99991 x 10-6, i.ooooo x 

(8.94330 x 9.00000 x 10-l) 
(9.95632 x 1.00000 x 10-l) 

(9.79992 x 9.80000 x 10-l) 
(1.99999 x 10-2, 2.00000 x 10-2) 

(9.99941 x 9.99950 x 10-l) 
(4.99997 x 5.ooooo x 

(9.99797 x 10-8, i.ooooo x 10-7) 
(9.99708 x 1.00000) 

(9.70759 x 9.99999 x 10-l) 
(9.79726 x 1.00000 x 

RD 
0.001 

.001 

.001 

.001 

.630 

.437 

.001 

.001 

.001 

.001 

,029 
.020 

2.924 
2.027 

The third example is a three-state semi-Markov model representing an exponential transition 
The two distributions are defined as follows: the competing with an impulse function. 

exponential distribution is given by 1 - e-Xt  for t > 0 and 

0 ( t  < a) 

1 ( t  2 a) 
G(t) = 

Example 3: Three-state model with exponential and impulse transitions. 
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The following equations define the statistics needed to describe the general transition G in 
example 3: 

00 

p(G*) = 1 dG(t) = 1 
0 

1 0 0  
p(G*)  = 1 tdG(t) = u 

P(G ) 0 

P(G*) 0 

1 0 0  02(G*)  = - 1 t2dG(t) - p2(G*) = u2 - u2 = 0 

The following equations define the death-state probabilities for states 1 and 2 in example 3: 

T 
&(T) = 1 [l - G(t)]Ae-Atdt = Ae- At  dt = 1 - eVAa 

0 

T 
D a ( T )  = / e-AtdG(t) = 1 - (1 - e-Aa)  = e-Aa 

0 
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Comparison of SURE With Analytic Solutions for Example 3 

Parameters 
x = 1 x 

x = I x 
a = 1 x 

a = 1 x 10-8 

x = 1 x 10-1 
a = 2 x 10-1 

x = 2 x 10-2 
a = 1 x 10-2 

x = 1 x 1 0 - ~  

x = 1 x 10-1 
a = 1 x 

x = 2 x 
a = 5 x lo-' 

x = 3 x 1 0 - ~  

x = 4 x 
a = I x 10-3 

x = 1 x 1 0 - ~  

x = 1 x 1 0 - ~  

a = 5  

x = 1 x 

a = 3 x 

a = l  

a = 2  

a = 3  

Death 
states 

Analytic 
solutions 

4.99988 x 
9.99950 x 10-1 

i.ooooo x 
1 .ooooo 

1.00000 x 10-lO 
1 .ooooo 
1.98013 x 
9.80199 x 10-1 

1.99980 x lop4 
9.99800 x 10-1 

3.00000 x 
1 .ooooo 

1.00000 x 10-8 
1 .ooooo 

9.99500 x 
9.99000 x 10-1 

2.99955 x lop4 
9.99700 x 10-1 

4.00000 x lo-'* 
1 .ooooo 

1.99998 x 
9.99980 x 10-1 

2.99996 x lop5 
9.99970 x 10-1 

*RECOVERY TOO SLOW 

SURE bounds 
(1.46434 x 5.00000 x 
(6.03100 x lo-', 1.00000) 

(9.96838 x lo-'', 1.00000 x lo-') 
(9.99708 x lo-', 1.00000) 

(9.99968 x 1.00000 x lo-'') 
(9.99999 x 10-1, 1.00000) 

(1.69716 x 2.00000 x 
(9.33584 x 1.00000) 

(9.93500 x lo-', 1.00000) 

(2.99836 x 3.00000 x 10-l') 
(9.99972 x lo-', 1.00000) 

(1.93655 x 2.00000 x 

(9.99900 x 10-9, i.ooooo x lo rs )  
(9.99997 x 10-1, 1.00000) 

(7.75893 x 10-4, i.ooooo x 
(9.13501 x lo-', 1.00000) 

(2.05087 x 3.00000 x 
(8.63979 x lo-', 1.00000) 

(3.96000 x lo-'', 4.00000 x lo-'') 
(9.98643 x lo-', 1.00000) 

(7.84537 x lo-', 1.00000) 

(1.35679 x lov5, 3.00000 x 
(7.17659 x lo-', 1.00000) 

(1.10555 x 10-5, 2.00000 x 

RD 
70.712 
39.687 

.316 

.029 

.003 

.ooo 

14.290 
4.756 

3.163 
.630 

.055 

.003 

.010 

.ooo 

22.372 
8.558 

31.627 
13.576 

1.000 
.136 

44.722 
21.545 

54.773 
28.232 

Note in the table that for values of a > 0.1, the relative difference is large. The SURE 
program has difficulty handling general recovery transitions which are slow relative to the 
mission time. 

Example 4 

Example 4a demonstrates the effect of using a slow exponential transition description when 
the exponential rate is actually fast. In contrast, example 4b shows the effect of using means 
and standard deviations to describe a slow exponential transition. Example 4b uses the same 
model as in 4a except the transition between states 0 and 1 is expressed as a general transition 
with mean and standard deviation. To demonstrate the problems associated with improper 
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specification of an exponential transition, the same test cases containing a wide range of values 
for the exponential transition are given in the tables for examples 4a and 4b. 

The model for these two examples is a three-state semi-Markov model representing an 
exponential transition competing with a uniform transition. The exponential distribution is 
given by 1 - eXt  for t > 0 and 

where b < T .  

Example 4a: Three-state model with slow exponential and uniform transitions. 

The following equations define the statistics needed to describe the general transition G in 
example 4a: 

00 

p(G*)  = / dG(t)  = 1 

p(G* )  = 

0 

1 0 0  b t  b 1 t d G ( t )  = s, dt = - 
P(G ) 0 2 

P(G*) 0 o b  4 12 
1 0 0  t2 b2 b2 

0 2 ( G * )  = - 1 t 2 d G ( t )  - p2(G*) = / - dt - - = - 

The following equations define the death-state probabilities for states 1 and 2 in example 4a: 

T Ab + e-Xb - 1 
Ab 

D l ( T )  = / [I - G(t) ]Ae-Xtdt  = kb (1 - %) A C x t d t  = 

D2(T) = [ e-XtdG(t) = 

0 

0 s, b d t =  

T b ,-At 1 - 
Ab 

- 
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Comparison of SURE With Analytic Solutions for Example 4a 

Parameters 
4 = 1 x 
= 1 X I O - ~  

A = 1 x 1 0 - ~  
= 1 X I O - ~  

A = 1 x 
i = 1 x 10-2 

A = 1 x 
i = 1 x 10-3 

x = 1 x 10-2 
5 = 1 x 1 0 - ~  

x = 1 x 102 
!I = 1 x 10-1 

x = 1 x 
!I = 1 x 10-1 

x = 1 x lo-' 

x = 1 x lo2 

x = 1 x io3 

x = 1 x io5 
b = 1 x 1 0 - ~  

x = 1 x 101 
b = 1 x 1 0 - ~  

x = 1 x io4 
b = 1 x io3 

x = 1 x 1 0 - ~  
b = 1 x 101 

b = 1 x lo3 

b = 1 x 

b = l  

Death 
states 

Analytic 
solutions 

i.OOOOO x 10-l' 
1 .ooooo 

j.OOOOO x 10-9 
1 .ooooo 

~.OOOOO x 10-8 
1 .ooooo 
~.OOOOO x 10-l~ 
1 .ooooo 

5.00000 x 
1 .ooooo 

9.00005 x 
9.99955 x 10-1 

9.99995 x 10-1 

9.90000 x 10-1 

4.99998 x 

1.00000 x 

4.98337 x 
9.95017 x 10-1 

9.99000 x 10-1 
LOOOOO x 

9.90000 x 10-1 
1.00000 x 10-2 

4.99983 x lov5  
9.99950 x 10-1 

1 .ooooo 
I.OOOOO x 

4.99983 x 
9.99950 x 10-1 

SURE bounds 
14.98709 x 5.00000 x 

:4.98709 x lo-', 5.00000 x lo-') 

19.99797 x 10-1, 1.00000) 

:9.99797 x 10-1, 1.00000) 

:4.87090 x lo-', 5.00000 x lo-') 
:9.95632 x 1.00000) 

:4.95918 x lo-'', 5.00000 x 
:9.99059 x 1 .OOOOO) 

[4.98709 x 5.00000 x 
(9.99797 x 10-1, 1.00000) 

(0.00000, 1.00000)* 
(0.00000, 1.00000) 

(4.59173 x 5.00000 x 
(9.79721 x 1.00000) 

(0.00000, 1.00000)* t t 
(0.00000, 1.00000) 

(9.94797 x 10-1, 1.00000) 

(0.00000, 1.00000) * 
(0.00000, 1.00000) 

(0.00000, 1.00000) * 
(0.00000, 1.00000 ) 

(4.99575 x 10-5, 5.ooooo x 

(0.00000, 1.00000)* t 3 
(0.00000, 1.00000 ) 

(4.97042 x 5.00000 x 

(9.99906 x 1.00000) 

(9.17350 x 5.00000 x 10-5)t 
(5.63160 x 10-l. 1.00000~ 

RD 
0.258 

.203 

.258 

.203 

2.582 
.437 

.816 

.094 

.258 

.203 

100.000 
100.000 

8.165 
2.027 

100.000 
100.000 

260 
.022 

100.000 
100.000 

100.000 
100.000 

.082 

.004 

100.000 
100.000 

81.652 
43.681 

*RATE TOO FAST 
TRECOVERY TOO SLOW 
$DELTA > TIME 

For large values of X (i.e., a fast exponential transition) in the table for example 4a, 
the bounds separate except in cases where the competing recovery rate is very fast. These 
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fast exponential rates should be expressed as general transitions with means and standard 
deviations. 

The model for example 4b is the same as for example 4a except that the transition from 
state 0 to state 1 is now considered a general transition. The distributions F and G are defined 
as follows: 

( t  > 0) - A t  F ( t )  = 1 - e 

G ( t )  = {? 
As before, b < T. 

Example 4b: Three-state model with fast exponential and uniform transitions. 

The followiiig equatioris definc the statistics needed to describe the general transitions F 
and G for example 4b: 

b At X b - l + e - A b  
Ab 

p(F*)  = lm[l - G ( t ) ]  d F ( t )  = 1 (1 - i) Xe- dt = 
0 0 

t [ l  - G ( t ) ]  dF( t )  = - /" t (1 - i) Xe-At dt 
1 0 0  

d F * )  0 
= po s, 
- Ab - 2 + Xbe-Ab + 2e-Ab 
- 

X ( X b  - 1 + cAb) 

1 t2[1 - F ( t ) ]  dG(t)  - p2(G*)  = dt - p2(G*)  
I *  

2 ( G * )  = - J 
P((:*)  0 

26 

1 *  
g 2 ( F * )  = - / t2[1 - G ( t ) ]  dF( t )  - p 2 ( F * )  = 1 Jb t2 ( I  - %) Xe-" dt 

P(F*) 0 d F * )  0 

2Xb - 6 + e-Ab(X2b2 + 4Xb + 6) 
X2(Xb - 1 +,-Ab)  - P2(F*) - - 

00 * 1  1 - ,-Ab 
p(G*) = / [l  - F ( t ) ]  dG(t)  = / = 

0 o b  Ab 



The following equations define the death-state probabilities for states 1 and 2 in example 4b: 

Ab + e-Xb  - 1 
Ab Dl(T) = lT[1- G(t ) ]  dF( t )  = / b  (1 - k) 

0 0 

Da(T) = / [l - F ( t ) ] d G ( t )  = / T d t  = 
0 0 

d t  = 

T b e - X t  l - - , - X b  

Ab 

Comparison of SURE With Analytic Solutions for Example 4b 

Parameters 
x = 1 x 10-6 

x = 1 x 

x = 1 x 

x = 1 x 

x = 1 x 10-2 

x = 1 x 102 

x = 1 x 1 0 - ~  

x = 1 x 10-1 

x = 1 x 102 

x = 1 x 103 

x = 1 x 105 
b = 1 x 

x = 1 x 101 
b = 1 x loF5 

x = 1 x io4 

b = 1 x 

b = 1 x 

b = 1 x IOp2 

b = 1 x 

b = 1 x 

b = 1 x 10-1 

b = 1 x 10-1 

b = 1 x lo3 

b = 1 x 

b = l  

b = 1 x lo3 

Death 
states 

Analytic 
solutions 

5.00000 x 
1 .ooooo 
5.00000 x 
1 .ooooo 
5.00000 x loF8 
1 .ooooo 

5.00000 x 
1 .ooooo 

5.00000 x 
1 .ooooo 

9.00005 x 10-1 
9.99955 x 10-2 

9.99995 x 10-1 

9.90000 x 10-1 
1.00000 x 10-2 

4.99998 x 

4.98337 x 
9.95017 x 10-1 

9.99000 x lo-' 
1.000oo x 10-~  

9.90000 x 10-1 
1.00000 x 

4.99983 x 
9.99950 x 10-1 

1 .ooooo 
LOOOOO x 

SURE bounds 
(4.99930 x 5.00000 x 
(9.99816 x 1.00000) 

(4.99930 x 5.00000 x 
(9.99816 x 1.00000) 

(4.98421 x 5.00000 x 
(9.96031 x lop1, 1.00000) 

(4.99674 x 5.00000 x 
(9.99145 x 1.00000) 

(4.99930 x 5.00000 x 
(9.99815 x 1.00000) 

(8.94763 x 9.00005 x lo-') 
(9.93657 x 9.99955 x 

(4.82881 x 4.99998 x 
(9.81548 x 9.99995 x 10-l) 

(0.00000, 9.90000 x 10-l)*t 
(0.00000, 1.00000 x 10-2) 

(4.98268 x lov3, 4.98337 x 
(9.94834 x 9.95017 x 10-l) 

(9.97645 x lo-', 9.99000 x 10-l) 
(9.98643 x 1.000oo x 

(9.99937 x 10-3, i.ooooo x io-2) 
(9.89938 x 9.90000 x 10-l) 

(4.99968 x 4.99983 x 
(9.99910 x 9.99950 x 10-l) 

(9.99708 x 1.00000) 
(9.99708 x 1.00000 x 

RD 
0.014 

.018 

.014 

.018 

.316 

.397 

.065 

.086 

.014 

.019 

.582 

.630 

3.423 
1.845 

100.000 
100.000 

.014 

.018 

.136 

.136 

.006 

.006 

.003 

.004 

.029 

.029 
*RECOVERY TOO SLOW 
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The analytic solutions for the means and standard deviations were extremely numerically 
unstable for small values of A and b. Consequently, a Taylor series expansion was used to reduce 
the form of the statistics used in the input files for the cases where A and b were small. 

Example 5 
The fifth example is a three-state semi-Markov model with two different exponential 

transitions. 

Example 5: Three-state model with slow exponential transitions. 

The following equation defines the death-state probability for state 2 in example 5: 

28 

Comparison of SURE With Analytic Solutions for Example 5 

Parameters 
= 1 x 1 0 - ~  

A2 = 1 x 10-3 

A 1  = 1 x 10-6 
A2 = 1 x 10-1 

A 1  = 1 x 10-2 
A2 = 1 

A 1  = 1 x 10- 
A2 = 1 x 10- 

A 1  = 1 
A2 = 1 x 10-6 

A 1  = 1 x 10-1 
= 1 x 10-7 

x1 = 2 x 10-5 
= 3 x 10-5 

A 1  = 1 x 10-2 
A2 = 2 x 10-2 

3 
5 

A 1  = 8 x lo-' 
= 8.5 x io-' 

= 1 x 
A2 = 2 x 10-2 

Death 
states 

Analytic 
soh  t ions 

4.98171 x 

3.67878 x lop6 

8.60233 x 10W2 

4.98321 x loy7 

9.00000 x 10-6 

3.67879 x lop7 

2.99950 x 

9.05592 x 

3.39999 x lo-" 

9.36537 x 

SURE bounds 
~~ ~____ 

(4.98167 x lov6, 5.00000 x lov6) 

(3.67878 x lop6, 3.67878 x 

(8.60233 x lop2 ,  8.60233 x 

(4.98317 x lo-', 5.00000 x lop7) 

(9.00000 x 10-6, 9.00000 x 10-6) 

(3.67879 x 3.67879 x 

(2.99950 x lo-', 3.00000 x lop8) 

(9.000oo x LOOOOO x 

(3.39998 x lo-", 3.40000 x lo-") 

(9.33333 10-8, LOOOOO x 

RD 

0.367 

.ooo 

.ooo 

.337 

.ooo 

.ooo 

.017 

10.425 

.ooo 

6.776 



Example 6 

In example 6, a three-state semi-Markov model with an impulse followed by an exponential 
transition is given. The impulse distribution F is defined as follows: 

F h 

Example 6: Three-state model with impulse and exponential transitions. 

The following equations define the statistics needed to describe the general transition F .  

00 

p(F*)  = / d F ( t )  = 1 

1 0 0  p ( F * )  = 7 / t d F ( t )  = a 

0 

P P  1 0 

P(F*) 0 
B 2 ( F * )  = - t2  dF( t )  - p 2 ( F * )  = a2 - a2 = 0 

The following equation defines the death-state probability for state 2 in example 6: 

Xe-’Y dy d F ( z )  = 1 - 

, 
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Comparison of SURE With Analytic Solutions for Example 6 

Parameters 
a = 1 x 
X = l  

a = l  
A = 1 x 10-2 

a = 1 x 
x = I x 

a = 1 x 10-8 
x = 1 x 10-1 

a = 1 x 10-1 
A = 1 x 10-8 

a = 2 x 
x = 1 x 10-6 

a = 4 x 1 0 - ~  
x = 3 x 10-2 

a = 3 x 1 0 - ~  
x = 2 x 

a = 1 x 10-6 
x = 1 x 1 0 - ~  

a = 1.1 x 
x = 1 x 10-3 

a = 3 x 1 0 - ~  
x = 2 x 10-3 

a = 2 x 1 0 - ~  
A = I x 10-7 

Analytic 
solutions 

9.99955 x 10-1 

8.60688 x 

9.99490 x lop4 

6.32121 x 10-1 

9.90000 x 10-8 

9.99993 x 

2.59181 x 10-1 

1.99800 x 

9.99950 x 

9.94908 x lop3 

1.98007 x 

9.99980 x 

SURE bounds 

(9.99662 x lo-', 9.99955 x lo-') 

(6.06740 x loV2,  1.00000 x lo-') 

(9.98624 x i.ooooo x 10-3) 

(6.32120 x lo-', 6.32121 x lo-') 

(9.13989 x IO-', 1.00000 x 

(9.99695 x 1.00000 x lop5) 

(2.59070 x 2.59182 x lo-') 

(1.99796 x 10-3, 2.00000 x 10-3) 

(9.99909 x 10-5, i.ooooo x 

(9.90702 x lop3, 1.00000 x 

(1.97641 x lov2, 2.00000 x 

(9.98607 x lo-', 1.00000 x 

RD 

0.029 

29.505 

.087 

.002 

7.678 

.030 

.043 

.loo 

.005 

.512 

1.007 

.137 

Example 7 

The seventh example is a four-state semi-Markov model with three exponential transitions. 
The following equations define the death-state probabilities for states 2 and 3 in example 7: 



Example 7: Four-state model with exponential transitions. 

Comparison of SURE With Analytic Solutions for Example 7 

Parameters 
A 1  = 1 x 10-2 
x2 = 1 x 10-3 
x3 = 1 x 10-4 

x1 = 1 x 10-7 
A2 = 1 x 10-2 

= 1 x 1 0 - ~  

= 1 x 1 0 - ~  
x2 = 2 x 10-5 

= 5 x 10-5 

A 1  = 1 x 10-6 
x2 = 1 x 10-7 
A3 = 1 x 10-2 

A 1  = 1 x 10-1 
x2 = 1 x 10-7 
A 3  = 2 x 10- 7 

A 1  = 1 x 10-2 
x2 = 5 x 10-5 
A3 = 3 x 10-8 

Death 
states 

Analytic 
solutions 

4.81958 x 
4.81958 x 

4.83726 x 
4.83726 x 

9.99733 x 
2.49933 x 

4.83740 x 
4.83740 x 

3.67879 x 
7.35758 x 

2.41830 x 
1.45098 x 

SURE bounds 

(4.81500 x 5.00000 x 
(4.81500 x 5.00000 x 

(4.83316 x 5.00000 x loa8) 
(4.83317 x 5.00000 x loall)  

(9.99733 x 1.ooooo x io-8) 
(2.49933 x 2.50000 x 

(4.83332 x 5.00000 x 
(4.83332 x 5.00000 x 

(3.67879 x 3.67879 x 
(7.35758 x 7.35758 x loa7) 

(2.41625 x 2.50000 x 
(1.44975 x 1.50000 x 

RD 

3.743 
3.743 

3.364 
3.364 

.027 

.027 

3.361 
3.361 

. 000 

. 000 

3.378 
3.378 

Example 8 

The eighth example is a four-state semi-Markov model with two exponential transitions and 
one uniform transition. The uniform distribution H is defined as follows: 
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I 
I Example 8: Four-state model with exponential and uniform transitions. 

t l b  ( t  L b )  
1 (t > b) 

H ( t )  = 

where b 5 T .  

example 8: 
The following equations define the statistics needed to describe the general transition H in 

00 

p ( H * )  = 1 dH( t )  = 1 

p ( H * ) = m l  1 0 0  t d H ( t ) = b l  1 b  t d t = Z  b 

0 

b2 b2 02(H*)  = - 1 t 2  dH( t )  - p 2 ( H * )  = 1 s b t 2  dt - - = - 
00 1 

d H * )  0 b o  4 12 

The following equations define the death-state probabilities for states 2 and 3 in example 8: 

T T-x 
D2(T) = / / Ale-X1xA2e-X2Y[1 - H ( y ) ]  dydx 

0 0  
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Comparison of SURE With Analytic Solutions for Example 8 

Parameters 
x1 = 4 x 1 0 - ~  
x2 = 3 x 1 0 - ~  
b = 1 x 1 0 - ~  

x1 = 5 x 10-6 
x 2  = 3 x 10-6 
b = 1 x 10-3 

x1 = 5 x 
A2 = 2 x 10- 
b = 1 x 1 0 - ~  

A 1  = 3 x 10-2 
A2 = 2 x 
b = 1 x 10-6 

x1 = 1 x 10-2 
x2 = 1 x 10-5 
b = 1 x 10-3 

A 1  = 3 x 10-6 
x 2  = 2 x 10-6 
b = 1 x 10-6 

x1 = 1 x 10-3 
A2 = 1 x 10-2 
b = I x 10-7 

x1 = 2 x 10-5 
x2 = 2 x 10-5 
b = 2 x 10-5 

x1 = 5 x 1 0 - ~  
x2 = 4 x 10-5 

x1 = 2 x 10-3 

b = 1 x 10-1 

A2 = 7 x 10-2 

x1 = 4 x 1 0 - ~  
x2 = 3 x 10-4 

3 

b = 1 x 10-1 

x 2  = 1 x 10- 6 

A 1  = 8 x 

b = 1 x 

b = l  

Death 
states 

Analytic 
solutions 

5.88160 x 
3.92107 x 

7.49981 x 
4.99987 x 

4.98752 x 
4.98752 x 

2.59182 x lo-' 
2.59182 x 10-1 

4.75813 x 
9.51626 x 

2.99996 x 
2.99996 x 

4.97508 x 
9.95017 x 

3.99960 x 
1.99980 x 

9.99749 x 10-10 
4.99874 x 

9.90066 x 10-l' 
1.98013 x 

1.92730 x 
5.50652 x 10-1 

5.98742 x 
3.99141 x 

SURE bounds 

(5.87050 x 6.00000 x 10-l') 
(3.91949 x 4.00000 x 

(7.37784 x 7.50000 x 
(4.98577 x 5.00000 x 

(4.96181 x 5.00000 x 10-l') 
(4.98447 x 5.00000 x lod3) 

(2.59057 x lo-', 2.59182 x lo-') 
(2.59175 x 2.59182 x lo-' 

(4.67476 x 5.00000 x 10-l' 
(9.47414 x 1.00000 x 10-l) 

(2.99841 x 3.00000 x 
(2.99987 x 3.00000 x 

(4.97419 x 5.00000 x 
(9.94994 x i.ooooo x io-2) 

(3.99037 x 4.00000 x 
(1.99938 x 2.00000 x 

(8.43172 x 1.00000 x 10-l') 
(4.69886 x 5.00000 x 

(8.35622 x 1.00000 x lo-' 
(1.86196 x 2.00000 x 

(1.90135 x lob5, 1.92735 x 
(5.49457 x 5.50671 x 10-l) 

(3.29627 x 6.00000 x 
(2.93634 x 4.00000 x 

RD 

2.013 
2.013 

1.626 
.282 

.515 

.250 

.048 

.003 

5.083 
5.083 

.052 

.003 

.501 

.501 

.231 

.021 

15.662 
5.999 

15.599 
5.968 

1.346 
.217 

44.947 
26.434 
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In example 8, SURE’S bounds separated in cases where the recovery rate was slow with 

Example 9 

The ninth example is a four-state semi-Markov model with an exponential transition, an 
The impulse distribution G(t)  and uniform 

respect to the mission time of 10 hours. 

impulse transition, and a uniform transition. 
distribution H ( t )  are defined as follows: 

where a < b < T 

Example 9: Four-state model with exponential, impulse, and uniform transitions. 

The following equations define the statistics needed to describe the general transitions G 
and H in example 9: 

b - a  
p(G*) = Jm[l - H ( t ) ] d G ( t )  = 1 - H ( a )  = - 

0 b 

b 
b - a  

t [ l  - H ( t ) ]  dG(t)  = -a[l - H ( a ) ]  = a 

u 2 (G*) = - lw t2[1 - H ( t ) ]  dG(t) - p2(G*)  
0 

b 
b - a  

= -a2[1 - ~ ( a ) ]  - a2 = o 

p ( H * )  = / [l - G ( t ) ]  d H ( t )  = / - dt = 2 
0 o b  b 

a 1  00 

b a t  a t [ l  - G ( t ) ]  d H ( t )  = - / - dt = - 
a o b  2 

00 1 

b a t2  a2 a2 Srn t2[1 - G(t ) ]  d H ( t )  - p 2 ( ~ * )  = - / dt - 
= E 

2 u ( H * )  = - 
P(H*) 0 a 0  
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The following equations define the death-state probabilities for states 2 and 3 in example 9: 

T T - x  
D~(T) = J J Xe-A5[1 - G(y)] dH(y) dx 

0 0  

T-x  1 
= iT-" e-xx s," dy dx + A IT  e-" s, dy dx 

T-a 
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Comparison of SURE With Analytic Solutions for Example 9 

Parameters 
x = 1 x 10-2 
a = 1 x 

x = 1 x 
a = 1 x 

x = 1 x 10-6 
a = 1 x 10-2 

x = 1 x 10-1 
a = 1 x 10-6 

x = 1 x 10-2 
a = 1 x 1 0 - ~  

x = I x 
a = 1 x 

x = 1 x 

b = I x 1 0 - ~  

x = 1 x lo-' 
a = 1 x 

x = 1 x 10-6 
a = 1 x 10-7 

A = 1 x 10-3 
a = 1 x 10-2 

6 = 1 x 

6 = 1 x loW2 

6 = 2 x 

6 = 1 x 

6 = 3 x 

6 = 1 x lo-' 

a = 1 x 

b = 1 x 

6 = 1 x loW6 

6 = 1 x lo4 

x = 1 x 
a = l  
6 = 1 x lo6 

Death 
states 

Analytic 
solutions 

9.51531 x 
9.51626 x 

8.95426 x 
9.94967 x 

4.99498 x 
4.99748 x 

5.68908 x 10-1 
6.32121 x 

6.34417 x 
3.17208 x lop2 

9.99499 x 1 0 - ~  
9.99500 x 10-l' 

8.99550 x lov4 
9.99500 x 

5.68875 x 10-1 
6.32102 x loW2 

8.99995 x 
9.99995 x 

9.94026 x low3 
9.94522 x 

8.99999 x 
9.50000 x 

SURE bounds 

(9.49897 x 9.99900 x 
(9.49994 x i.ooooo x 

(8.91869 9.ooooo x 10-3) 
(9.92202 x i.ooooo x 

(4.90588 x 5.00000 x 
(4.93465 x 5.00000 x 

(5.68892 x lo-', 5.68909 x 10-l) 
(6.32108 x 6.32121 x 10-l) 

(6.33218 x 6.66667 x 
(3.16627 x 3.33333 x 

(9.99490 x 9.99999 x 
(9.99494 x io-lo, 1.00ooo x 10-9) 

(8.99513 x 9.ooooo x 
(9.99472 x 10-5, LOOOOO x 

(5.67238 x lo-', 5.68909 x lo-') 
(6.30833 x 6.32121 x 

(8.99988 x 9.00000 x 
(9.99989 x 1.00000 x 

(9.76335 x 10-3, 9.99999 x 
(9.82043 x 1.00000 x 

(6.29677 x 9.99999 x 
(7.35400 x 1.00000 x 

RD 

5.083 
5.083 

.511 

.506 

1.784 
1.257 

.003 

.002 

5.083 
5.083 

.050 

.050 

.050 

.050 

.288 

.201 

.001 

.001 

1.780 
1.255 

30.036 
22.589 
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Example 10 

The tenth example is a five-state semi-Markov model with two exponential transitions 
competing with an impulse function. The impulse distribution H ( t )  is defined as follows: 

0 (t 5 a) 

1 (t  > a)  
H ( t )  = 

where a < T. 

2 
h 

1 
h 

Example 10: Five-state model with exponential and impulse transitions. 

The following equations define the statistics needed to describe the general transition H in 
example 10: 

00 

p ( H * )  = / dH( t )  = 1 
0 

1 "  p ( H * )  = 7 / t d H ( t )  = a 
P(H 1 0 

2 1 "  
0 2 ( H * )  = - / t2  d H ( t )  - p 2 ( H * )  = u - a2 = 0 

P(H*) 0 

The following equations define the death-state probabilities for states 2, 3, and 4 in 
example 10: 
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Comparison of SURE With Analytic Solutions for Example 10 

Parameters 
x1 = 5 x 1 0 - ~  
x2 = 4 x 1 0 - ~  
x3 = 3 x 
a = 1 x 10-6 

A 1  = 1 x 10- 
x2 = 1 x 10-5 
A3 = 1 x 10- 
a = 1 x 10-6 

= 3 x 1 0 - ~  
x2 = 2 x 10-3 

= 1 x 10-5 
a = 2 x 

A 1  = 2 x 10-2 
x2 = 2 x 10-3 
x3 = 4 x 1 0 - ~  
a = 1 x 10-1 

A 1  = 5 x 10-6 
A2 = 4 x 10-6 
A3 = 1 x 10-2 
a = 1 x 10-3 

A 1  = 1 x 10-1 
A2 = 1 x 10-1 
x3 = 2 x 
a = 5 x 10-7 

A 1  = 3 x 10-6 
A2 = 2 x 
A3 = 1 x 10-2 
a = 1 x 10-8 

A 1  = 2 x 10-2 
A2 = 1 x 10- 

= 4 x 10-5 
a = 1 x 10-3 

= 4 x 
= 3 x 10-5 

x3 = 4 x 
a = 1 x 10-6 

3 

4 

8 

Analytic 
solutions 

1.99501 x 
1.49626 x 
4.98752 x 

9.95017 x 
9.95012 x 
9.95017 x 

1.18218 x 
5.91089 x 
2.95545 x 

3.62495 x 
7.24990 x 
1.81226 x 10-1 

1.99994 x 
4.99985 x lo-’’ 
4.99983 x 

3.16060 x 
6.32121 x 
6.32121 x lo-’ 

5.99991 x lo-” 
2.99996 x 
2.99996 x 

1.81269 x 
7.25077 x lo-’ 
1.81269 x 10-1 

1.19976 x 
1.59951 x lo-’ 
3.99920 x 

SURE bounds 

(1.99374 x 2.00000 x 
(1.49531 x 1.50000 x 
(4.98730 x 5.00000 x 

(9.94372 x i.ooooo x 10-l~) 
(9.94372 x 1.00000 x 
(9.94960 x 1.00000 x 

(1.17868 x 10-9, 1.20000 x 
(5.89342 x 6.00000 x 
(2.95412 x 3.00000 x 

(2.94801 x 4.00000 x 
(5.89601 x 8.00000 x 
(1.65546 x 2.00000 x lo-’) 

(1.96014 x 10-~3, 2.00000 x 10-l~)  

(4.97949 x 5.ooooo x 
(4.90035 x 5.00000 x 

(3.15948 x lo-’, 3.16060 x 
(6.31897 x 6.32121 x 
(6.32109 x lo-’, 6.32121 x lo-’) 

(5.99953 x io-lg,  6.ooooo x 10-l~) 
(2.99977 x 3.00000 x 
(2.99995 x 3.00000 x 

(1.76614 x 2.00000 x 
(7.06456 x 8.00000 x 
(1.79322 x 2.00000 x lo-’) 

(1.19900 x 1.20000 x 10-l~) 
(1.59867 x 1.60000 x 
(3.99904 x 4.00000 x 

RD 

0.250 
.250 
.250 

.501 

.501 

.501 

1.507 
1.508 
1.507 

18.674 
18.675 
10.359 

1.990 
1.990 
.407 

.035 

.035 

.002 

.006 

.006 

.001 

10.333 
10.333 
10.333 

.020 

.053 

.020 
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Example 11 

The eleventh example is a four-state semi-Markov model with three different exponential 
transitions. 

3L 

)o 2 bo h 2  

Example 11: Four-state model with exponential transitions. 

The following equation defines the death-state probability for state 3 in example 11: 

T T-x T-X-y 
D ~ ( T )  = / J J ~ l e - ~ l ~ ~ 2 e - ~ ~ Y A 3 e - ~ 3 ~  dz dy dz 

0 0  0 

- 1 - ,-w - Al(e-XlT + e-X2T) - A ~ ( I  - e-X2T) ~ 1 ~ 2 ( 1 -  e-’3T) - 
- A 1  + A2 -A2 + A3 + A3(-A2 -k A3) 
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Comparison of SURE With Analytic Solutions for Example 11 

Parameters 
4 A 1  = 1 x 10- 

= 1 x 10-5 
A3 = 1 x 10-6 

A 1  = 1 x 10-1 
A2 = 1 x 10-2 
A3 = 1 x 10- 

= 3 x 10-4 
= 2 x 

A3 = 1 x 10- 

A2 = 1 x 10-2 
x3 = 5 x 1 0 - ~  

A 1  = 3 x 10-I 
A2 = 2 x 10-1 
A3 = 1 x 10-1 

A 1  = 5 x 10-2 
A2 = 3 x 10-2 
A3 = 2 x 10-2 

A 1  = 1 x 10- 
= 1 x 10-4 

A3 = 1 x 10-1 

A 1  = 4 x 10-2 

3 

4 

A 1  = 6 x 

7 

A2 = 6 x 
A3 = 8 x 

3 A 1  = 1 x 10- 
A2 = 1 x 10-6 
A3 = 1 x 10- 

Example 12 

7 

Death 
states 

Analytic 
solutions 

1.66629 x 

1.28398 x 

9.98501 x 

4.87126 x low9 

2.52580 x lo-' 

3.90668 x 

1.32086 x 

2.89949 x lo-' 

1.66264 x 

SURE bounds 
~ 

(1.66620 x 1.66667 x 

(1.28398 x 1.28398 x lov4) 

(9.98500 x lo-'', 1.00000 x 

(4.86867 x 5.00000 x 

(2.52580 x lo-', 2.52580 x lo-') 

(3.90668 x 3.90668 x 

(1.32086 x 1.32086 x lo-'') 

(2.89949 x lo-', 2.89949 x lo-') 

(1.66250 x 1.66667 x 

RD 

0.023 

.ooo 

.150 

2.643 

.ooo 

.ooo 

.ooo 

.ooo 

.242 

Example 12 is a five-state semi-Markov model with three exponential transitions and one 
impulse transition. The impulse distribution H ( t )  is defined as follows: 

0 ( t  5 a) 
1 (t > a) 

H ( t )  = 

where a < T 
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Example 12: Five-state model with exponential and impulse transitions. 

The following equations define the statistics needed to describe the general transition H in 
example 12: 

00 

p ( H * )  = / dH( t )  = 1 
0 

l T  
0 2 ( H * )  = - 1 t 2  d ( H ) ( t )  - p 2 ( H * )  = a2 - a2 = 0 

d H * )  0 

The following equations define the death-state probabilities for states 3 and 4 in example 12: 

1 T-2-9 + s,’ e-Xzv IT-” e-XzY e-’3’ dz d y  dx 
T-x-a 
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Comparison of SURE With Analytic Solutions for Example 12 

Parameters 
x1 = 5 x 1 0 - ~  
)r2 = 4 x 10-5 
x3 = 3 x 10-5 
a = 1 x 10-7 

A 1  = 3 x 10-2 
A2 = 2 x 10-2 
A3 = 1 x 10-2 
a = 1 x 10-6 

x1 = 1 x 
= 1 x 10-3 

A3 = 1 x 10-2 
a = 1 x 10-1 

= 4 x 
= 3 x 1 0 - ~  
= 1 x 

a = 1 x 10-2 

A 1  = 1 x 10-1 
x2 = 1 x 1 0 - ~  
x3 = 1 x 10-7 
a = 1 x 1 0 - ~  

= 5 x 10-7 
A3 = 1 x 10-1 
a = 1 x 

= 3 x 1 0 - ~  
A2 = 2 x 10-6 
x3 = 4 x 10-7 

A 1  = 5 x 10-6 
A2 = 4 x 10-6 
A3 = 5 x 10-6 
a = 4 x 10-6 

x1 = 3 x 1 0 - ~  
x2 = 2 x 10-3 

= 1 x 10-3 
a = 1 x 101 

A 1  = 6 x 

a = l  

Analytic 
solutions 

2.99910 x 
9.99700 x 

2.54442 x 10-l' 
2.54442 x 

4.98072 x 10-l' 
4.97823 x 

5.98602 x 
5.98601 x 

3.67749 x 
3.67747 x 

1.49999 x 
1.50000 x 

1.19987 x 
2.99968 x 

1.99994 x 
9.99970 x 

2.93577 x lob6 
2.92111 x 

SURE bounds 

(2.99820 x 3.00000 x 1O-l') 
(9.99685 x 1.00000 x 

(2.54214 x lo-'', 2.54442 x 10-lo) 
(2.54426 x 2.54442 x 

(3.63194 x 5.00000 x 10-l') 
(4.28464 x 5.00000 x 

(5.43629 x 6.00000 x 
(5.79951 x 6.00000 x 

(3.66749 x 3.67747 x 
(3.67645 x 3.67747 x 

(1.48580 x 1.50000 x 
(1.49779 x lo-'', 1.50000 x 

(3.83605 x 1.20000 x 
(1.37616 x 3.00000 x 

(1.99615 x 2.00000 x 
(9.99799 x lo-lo, i.ooooo x 

(0.00000, 3.00000 x 10-6)*t 
(7.32879 x 3.00000 x 

RD 

0.030 
.030 

.090 

.006 

27.080 
13.932 

9.184 
3.116 

.272 

.028 

.946 

.147 

68.029 
54.123 

.190 

.017 

100.000 
97.491 
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~ 

Comparison of SURE With Analytic Solutions for Example 12-Concluded I 

D3(T) 
D4(T) 

&(T) 
D4(T) 

Parameters 
= 1 x 

x2 = 1 x 
A3 = 1 x 10-2 
a = 2  

9.86445 x 
4.88307 x 

1.47232 x 
4.83448 x 

x1 = 1 x 
x2 = 1 x 10-3 
A3 = 1 x 10-2 
a = 3  

Death Analytic 
states solutions t 

*RECOVERY TOO SLOW 

SURE bounds 

(1.65525 x 1.00000 x 
(1.23558 x lop6, 5.00000 x 

(1.33948 x lo-', 1.50000 x 
(6.50732 x 5.00000 x 

;; 
86.540 

?DELTA > TIME I 

As shown in the table for example 12, the bounds again tended to separate when the recovery 

Example 13 
The thirteenth example is a five-state semi-Markov model with two exponential transitions 

transition was slow with respect to the mission time. 

and one impulse transition. The impulse distribution H ( t )  is defined as follows: 

0 ( t  5 a)  

1 ( t  > a )  
H ( t )  = 

where a < T 

I H  

Example 13: Five-state model with exponential and impulse transitions. 

The following equations define the statistics needed to describe the general transition H in 
example 13: 

00 

p(H*) = 1 d H ( t )  = 1 

1 
0 

2 
1 00 

a 2 ( H * )  = - / t 2 d H ( t )  - &H*) = a - a2 = 0 
d H * )  0 
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The following equations define the death-state probabilities for states 2 and 4 in example 13: 
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Comparison of SURE With Analytic Solutions for Example 13 

Parameters 
x1 = 1 x 
x 2  = 1 x 10- 
a = 1 x 10-6 

x1 = 3 x 
x2 = 2 
a = 1 x 

x1 = 2 x 10-3 
x 2  = 1 x 10- 
a = 4 x 1 0 - ~  

A 1  = 1 x 10- 
x2 = 1 x 10-5 
a = 1 x 1 0 - ~  

x1 = 5 x 10-7 
= 3 x 10-7 

a = 1 x lo-' 

x1 = 1 x lo-' 
x 2  = 1 x 10-1 
a = 1 x 10-6 

A 1  = 3 x 10-2 
x 2  = 2 x 10-2 

x1 = 4 x 
x2 = 3 x 1 0 - ~  

x1 = 4 x 1 0 - ~  
x2 = 3 x 1 0 - ~  

x1 = 4 x 1 0 - ~  
x2 = 3 x 1 0 - ~  

x1 = 3 x 1 0 - ~  
x2 = 1 x 10-3 

x1 = 3 x 1 0 - ~  
x2 = 2 x 1 0 - ~  
a = 5 x 10-2 

4 

2 

2 

a = 2 x 

a = 5  

a = 3  

a = 2  

a = l  

Death 
states 

Analytic 
solutions 

9.99950 x 
4.99967 x 

5.99101 x 
4.49101 x 

7.92051 x 
1.97358 x 

9.51581 x 
4.67794 x 

1.49250 x 
1.22512 x 

6.32121 x 
2.64241 x 10-1 

1.03563 x 
3.67883 x 

4.49001 x 
1.99434 x 

3.05346 x loA6 
3.90917 x 

2.15548 x 
5.10603 x 

2.80835 x 
3.57647 x 

2.99205 x 
4.45422 x 

*RECOVERY TOO SLOW 

SURE bounds 

(9.99318 x i.ooooo x 10-l~ 
(4.99933 x 5.ooooo x 10-9) 

(5.98980 x 6.00000 x 
(4.49093 x 4.50000 x 

(7.88851 x 8.00000 x 
(1.97178 x 2.00000 x 

(9.31585 x 1.00000 x 
(4.63597 x 5.00000 x 

(1.21500 x lovi3, 1.50000 x 
(1.07567 x lo-", 1.25000 x lo-'' 

(6.31804 x 6.32121 x 
(2.64228 x l O - l ,  2.64241 x lo-') 

(9.51930 x 1.03673 x 
(3.52419 x 3.69363 x 

(5.13100 x 6.00000 x 
(2.04734 x 8.00000 x 

(7.34999 x 3.60000 x 
(1.08570 x 8.00000 x 

(7.32166 x 2.40000 x 
(2.02824 x 8.00000 x 

(1.38723 x 3.00000 x 
(2.03197 x 4.50000 x 

(2.59037 x 3.00000 x 
(4.09686 x 4.50000 x 

RD 

0.063 
.007 

.020 

.200 

1.003 
1.342 

5.083 
6.792 

19.000 
12.190 

.050 

.005 

8.161 
4.203 

91.425 
100.000 

79.533 
150.617 

69.423 
67.108 

53.038 
42.482 

13.641 
8.021 



Note in the table for example 13 that large relative errors Gccurred when the recovery rate 
was slow. 

Example 14 

The fourteenth example is a five-state semi-Markov model like that for example 13 except 
The impulse that there is an additional exponential transition from state 1 to state 4. 

distribution H is defined as follows: 

0 ( t  I a)  

1 (t > a)  
H ( t )  = 

where a < T 

I I 1  1 

Example 14: Five-state model with exponential and impulse transitions. 

The following equations define the statistics needed to describe the general transition H in 
example 14: 

00 

p ( H * )  = / d H ( t )  = 1 
0 

00 1 p ( H * )  = 7 / t d H ( t )  = a 
P(H 1 0 

1 0 0  0 2 ( H * )  = - / t 2 d H ( t )  - p 2 ( H * )  = a2 - a2 = 0 
P(H*) 0 

The following equations define the death-state probabilities for states 2 and 4 in example 14: 

T T-x 
&(T) = / / 

0 0  
Ale-X1xX2e-(X2+X3)Y[l - H(y) ]  dy dx 
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Comparison of SURE With Analytic Solutions for Example 14 

Parameters 
x1 = 4 x 
x2 = 3 x 
x3 = 2 x 
a = 1 x 

x1 = 3 x 10-2 
x 2  = 2 x 
x3 = 1 x 10-1 
a = I x 

x1 = 5 x 
x2 = 4 x 1 0 - ~  
A3 = 1 x 10-2 
a = 1 x 

x1 = I x 10-3 
= I x 10-3 

A3 = 1 x 10-6 
a = 5 x 10-6 

x1 = 2 x 
x 2  = 3 x 10-6 
x3 = 1 x 1 0 - ~  
a = 2 x 1 0 - ~  

x1 = 1 x 10-6 
A2 = 1 x 10-1 
x3 = 2 x 1 0 - ~  
a = 4 x 10-3 

x 2  = 7 x 10-6 
A3 = 1 x 10-2 
a = 5 x 10-6 

x1 = 3 x 10-2 
x 2  = 2 x 10-2 
x3 = 1 x 10-5 

x1 = 1 x 1 0 - ~  
A 2  = 1 x 10-2 
A3 = 1 x 10-1 
a = 1 x lo-' 

A 1  = 8 x lop6 

a = l  

Death 
states 

Analytic 
solutions 

1.17632 x 

7.78982 x 

5.18363 x 

3.69365 x 

1.99949 x 10-l' 

1.29931 x 

4.97508 x 10-l' 

4.96679 x 

1.18808 x 

1.97353 x 

3.99916 x lo-' 

1.29923 x 

2.79989 x 

3.20383 x 

5.13212 x 

2.95728 x 

9.89564 x 

1.47102 x 

SURE bounds 

(1.17367 x 10-9, 1.20000 x 10-9) 

(7.78425 x 8.00001 x 

(5.17401 x 5.18364 x 

(3.69258 x lop2, 3.69366 x 

(1.95970 x 2.00000 x lov1') 

(1.29010 x 1.30000 x 

(4.96798 x 5.00000 x 

(4.96568 x 5.00000 x lov5) 

(1.18466 x 1.20000 x 10-l2) 

(1.97235 x 2.00000 x 

(3.84078 x lo-', 4.00000 x lo-') 

(1.25945 x 1.30000 x 10-lo) 

(2.79593 x 2.80000 x 

(3.20319 x 3.20400 x lo-') 

(2.49914 x 5.18364 x 

(1.74563 x 3.69389 x 

(8.01427 x 1.00000 x 

(1.22415 x 1.50000 x 

RD 

2.013 

2.698 

.186 

.029 

1.990 

.709 

.501 

.669 

1.003 

1.342 

3.960 

3.062 

.141 

.020 

51.304 

40.972 

19.012 

16.782 
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Comparison of SURE With Analytic Solutions for Example 14-Concluded 

Parameters 
4 A 1  = 6 x 10- 

x2 = 5 x 
A3 = 3 x 10-2 
a = 1 x 10-8 

x1 = 1 x 10-6 
x 2  = 1 x 
A3 = 1 x 10-8 
a = 1 x 10-1 

x1 = 5 x 1 0 - ~  
x 2  = 4 x 10-5 
A3 = 1 x 10-2 

x1 = 5 x 
x 2  = 4 x 
A3 = 1 x 10- 

a = 2  

2 

a = 3  

Death 
states 

Analytic 
solutions 

2.99102 x loyi4 

1.79282 x 

9.99994 x 10-12 

4.90096 x 

3.95912 x 

9.97128 x 

5.90906 x 

1.48212 x 
*RECOVERY TOO SLOW 

~~~ ~- 

SURE bounds 

(2.99081 x 3.00000 x 

(1.79279 x 1.80000 x 

(8.09996 x 1.00000 x 

(4.30347 x 5.00100 x lo-'') 

(1.19993 x 4.00000 x 

(3.03076 x lop6, 1.01250 x 

(1.18633 x lop8, 6.00000 x 

(2.98211 x 1.51250 x 

RD 

0.300 

.400 

19.000 

12.191 

69.692 

69.605 

79.924 

79.879 

Again, for example 14 large relative errors occurred when recovery times were relatively 
slow with respect to the mission time. 

Example 15 

The fifteenth example is a three-state semi-Markov model with a transient fault where all 
transitions are exponential. 

Example 15: Three-state model with a transient fault. 

Since there are an infinite number of paths leading to the death state in this model, an exact 
expression for the unreliability cannot be obtained by using convolution integrals. However, 
this model is pure Markov; so, an exact expression for the death-state probability D2(T) can 
be obtained by solving the following set of differential equations: 
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Comparison of SURE With Analytic Solutions for Example 15 

Parameters 
x1 = 5 x 
x2 = 4 x 
x3 = 3 x 1 0 - ~  

x1 = 1 x 10-3 
x2 = 1 x 10-5 
x3 = 1 x 10-7 

x1 = 1 x 10-7 
x 2  = 1 x 10-6 
x3 = 1 x 10-5 

x1 = 3 x 10-4 
x2 = 2 x 10-4 
x3 = 1 x 10-1 

x1 = 1 x 10-5 
x2 = I x 10-7 
x3 = 1 x 10-3 

A 1  = 8 x 
4 A2 = 4 x 10- 

x3 = 3 x 1 0 - ~  

x1 = 1 x 10-1 
x 2  = 1 x 10-2 
x3 = 1 x 10-3 

x1 = 2 x 10-3 
A2 = 3 x 10-1 
x3 = 2 x 10-4 

A 1  = 5 x 10-2 
x 2  = 4 x 10-2 
x3 = 1 x 10-7 

x1 = 3 x 10-3 
x2 = 2 x 10-3 
x3 = 1 x 10-6 

Death 
states 

Analytic 
solutions 

9.96009 x 

4.98321 x 

4.99982 x 

2.20417 x 

4.98321 x 

1.59202 x 

3.54027 x lov2 

1.35515 x 

7.45224 x 

2.95046 x 

SURE bounds 

(9.96001 x 1.00000 x 

(4.98317 x 5.00000 x 

(4.99981 x 5.00000 x 

(2.20417 x 2.20417 x 

(4.98317 x 5.00000 x lo-'' 

(1.59200 x 1.60000 x 

(3.54027 x 3.54027 x 

(1.35515 x 1.35515 x 

(7.45224 x lop2, 7.45224 x 

(2.94999 x lop4. 3.00000 x 

RD -_ ~- 

0.401 

.337 

.004 

.ooo 

.337 

.501 

.ooo 

. 000 

.ooo 

1.679 
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Appendix B 

Comparison of SURE With Other Reliability Analysis Tools 

Example 16 

The model for example 16 represents a duplex system which could consist of two similar 
components such as processors or buses. Only one working component is necessary for the 
system to function properly. The component failure rate is given by X and the recovery rate is 
denoted by 6. 

h 

Example 16: Duplex system with permanent faults. 

Comparison Among SURE, PAWS, and CARE I11 for Example 16 

Parameters 
x = 1 x 10-2 
5 = 1 x 102 

x = 1 x 10-2 
5 = 1 x io4 

x = 1 x 10-5 
5 = 1 x 108 

x = 1 x 10-2 
5 = 1 x 103 

X = l  
5 = 1 x 106 

x = 1 x 10-4 
5 = 1 x 101 

Death 
state SURE bounds 

(1.65059 x 10-5, 2.00000 x 
(8.66173 x 1.00000 x 
(8.67824 x loe3, 1.00200 x 

(1.78482 x 2.00000 x 
(8.98416 x 1.00000 x 
(8.98434 x 1.00002 x 

(1.99962 10-17, 2.00000 x 10-l~)  
(9.99896 x 1.00000 x lo-') 
(9.99896 x lo-', 1.00000 x lop8) 

(1.75218 x 2.00000 x 
(8.92656 x 1.00000 x 
(8.92831 x 1.00200 x lop2) 

(9.99552 x 1.00000 x 
(9.99891 x lo-', 9.99909 x 10-l) 
(9.99892 x lo-', 9.99910 x 10-l) 

(1.47303 x 2.00000 x 
(8.25682 x 1.00000 x 
(8.40412 x 1.02000 x 

PAWS 
1.81087 x 
9.03781 x 
9.05592 x 

1.81267 x 
9.05574 x lop3 
9.05592 x 

1.99980 x 
9.99900 x 
9.99900 x 1 0 - ~  

1.81251 x 
9.05410 x 
9.05592 x 

9.99999 x 

9.99909 x 10-1 
9.99908 x 10-1 

1.97802 x 
9.79220 x 
9.99001 x 

CARE I11 

9.05591 x 

9.05591 x 

9.99900 x 10-9 

9.05591 x 

9.99909 x 10-1 

9.99000 x io-' 
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Example 17 

Example 17 is similar to example 16 but has one additional component; hence, example 17 
models a triad with permanent faults. Again, only one component is necessary for the system 
to operate. The permanent fault-arrival rate is given by X and the fault-recovery rate is given 
by 6. 

Example 17: Triad with permawrit faults. 

Parameters 
x = I x 
5 = 1 x lo2 

x = 1 x 10-2 
6 = I x 103 

x = 1 x 1 0 - ~  
6 = 1 x lo8 

x = 1 x 10-8 
6 = 1 x 102 

X = 1 x 10-6 
6 = 1 x 106 

Comparison Among SURE, PAWS, and CARE I11 for Example 17 
Death 
state SURE bounds 

(5.39677 x 6.00000 x 
(2.46916 x lo-’, 3.00000 x lo-’) 
(8.80393 x 1.00000 x 
(1.42254 x lop6, 1.60300 x lop6) 

(5.04812 x lop6, 5.18364 x lop6) 
(2.42381 x 2.54442 x lop7) 
(8.42161 x 8.61784 x 
(8.47451 x 8.67222 x 

(5.99046 x 6.00000 x 
(2.99459 x 3.00000 x 
(9.98489 x 1.00000 x 
(9.98495 x io-1o, i.ooooo x 10-9) 

(5.47534 x 10-17, 6.ooooo x 10-l7) 

(5.47543 x 10-17, 6.00010 x 10-17) 

(2.50897 x 3.00000 x 
(8.93395 x 1.00000 x 

(5.99454 x 6.ooo00 x 10-17) 
(2.99567 x 3.00000 x 
(9.99746 x 1.00000 x 
(1.05969 x 1.06000 x 

PAWS 
5.90495 x 
2.93870 x lo-’ 
9.79231 x 
1.57267 x 

5.18309 x 
2.54341 x 
8.61267 x 
8.66705 x 

5.99101 x 
2.99500 x lo-’’ 
9.98501 x lowlo 
9.98507 x 

5.99400 x 
2.98802 x 
9.94018 x 
5.99410 x 

5.99991 x 
2.99995 x 
9.99984 x 
1.05998 x 

CARE I11 

1.57588 x 

8.66969 x 

9.98501 x 

5.99676 x lo-’’ 

1.06019 x lo-’: 
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Example 18 

The model for example 18 represents a system of four components. In this model of the 
system, three faults that occur before the system can recover cause the system to fail; otherwise, 
the system can function with only one working component. The fault-arrival rate is given by 
A; the fault-recovery rate from a first fault is given by a, and from a second fault, by p. 

Models that consider critical-triple faults cannot be directly modeled with CARE I11 since 
the program does not allow the user to specify M of N gates in its critical-pair fault tree for 
M 2 3. The CARE I11 user’s guide does state that postprocessing involving the calculation 
of a convolution integral may be required when critical-triple failures are modeled. CARE 111 
presumably, however, gives a conservative estimate of unreliability in cases with critical-triple 
 fault^;^ this estimate is given in the following table. 

From the table for example 18, one can see that although the CARE I11 solutions for 
unreliability are conservative, they are several orders of magnitude larger than the SURE and 
PAWS solutions. 

Example 18: Critical-triple four-plex. 

There is no  formal mathematical proof nor is there documented testing to  show that  CARE 111’s estimates 
are always conservative for models with critical-triple faults. However, since CARE I11 considers only critically 
coupled faults when assessing a model that  contains critical-triple faults, the total unreliability tha t  CARE I11 
computes for that  model should be larger than the true unreliability of the system. In essence, CARE I11 
assumes tha t  the  system can tolerate fewer faults than  it actually can; hence, the system fails faster and is 
deemed less reliable. 
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Comparison Among SURE, PAWS, and CARE I11 for Example 18 
Death 
state Parameters 

x = 1 x 
cr = 1 x lo2 
p = I x io7 

X = l  
= 1 x io7 

p = 1 x lo2 

A = 1 x 1 0 - ~  
= 1 x io3 

p = 1 x io4 

x = 1 x 1 0 - ~  
= 1 x io7 

p = 1 x lo2 

X = 1 x 10-6 
= 1 x io5 

p = 1 x 106 

SURE bounds 
~ 

D3(T) 
D7(T) 
Dlo(T) 
Total 

D3(T) 
D ~ ( T )  
Dlo(T) 
Total 

D3(T) 
D7(T) 
Dlo(T) 
Total 

D3(T) 
D7(T) 
Dlo(T) 
Total 

D3(T) 

Dlo(T) 
Total 

D ~ ( T )  

(2.14761 x 2.40000 x 
(9.83067 x lo-'', 1.20240 x IO-'') 
(8.54421 x lo-', 1.00000 x lo-') 
(8.54421 x 1.00801 x lop8) 

(5.61088 x lo-', 6.00000 x lo-') 
(1.89028 10-9, 2.00000 x 
(9.99811 x lo-', 9.99819 X lo-') 
(9.99811 x lo-', 9.99819 x lo-') 

(2.30709 x 2.40000 x 
(1.12214 x 1.20024 x 
(9.68412 x 1.00080 x 
(9.68435 x 1.00082 x 

(2.18908 x 2.40000 x 
(1.04539 x 1.20000 x 
(9.99736 x 1.00000 x 
(9.99736 x 1.00000 x 

(2.39103 x 2.40000 x 

(9.98560 x 1.00001 x 
(9.98560 x 1.00001 x 

(1.19281 x 1.20000 x 

PAWS 
2.35026 x 
1.17003 x 10-l' 
9.80215 x lop9 
9.80215 x 

5.88235 x lop9 
1.98020 x 
9.99818 x 10-I 
9.99818 x 10-1 

2.39494 x 
1.19694 x 
9.98002 x 
9.98026 x 

2.39712 x 
1.19732 x 
9.99800 x lo-'' 
9.99802 x 

2.39994 x 
1.19936 x 
9.99980 x 
9.99980 x -~ ~~ 

CARE I11 

1.19718 x 

1 .ooooo 

1.20012 x 

1.19909 x 10-10 

1.20310 x 

Example 19 

Example 19 is a triad of components susceptible to both permanent and transient faults. 
Two faults that occur before recovery can take place cause system failure; otherwise, the system 
degrades until there are no more functioning components. The fault-arrival rate is given by A, 
the permanent-fault-recovery rate is given by 6, and the transient-fault-recovery rate is given 
by Q. e- 

a l 

a I 
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Comparison Among SURE, PAWS, and CARE I11 for Example 19 

Parameters 
x = 1 x 1 0 - ~  
5 = 1 x io5 
cy = 1 x io3 

x = 1 x 10-8 
6 = 1 x 107 
a = 1 x lo2 

x = 1 x 1 0 - ~  
s = 1 x io4 
CY = 1 x lo-' 

x = 1 x 10-6 
s = 1 x io3 
CY = 1 x 10-2 

x = 1 x 
6 = 1 x 103 
a = l  

x = 1 x 1 0 - ~  
6 = 1 x 102 
CY = 1 x io5 

SURE bounds 
(5.83601 x 5.94148 x lo-'') 
(2.87909 x 2.94137 x 
(9.64650 x 9.80417 x 
(9.65236 x 9.81015 x 

(5.99824 x 5.99994 x 
(2.99861 x 2.99994 x 
(9.99928 x 9.99980 x 
(1.59975 x 1.59997 x 

(5.93752 x 5.99994 x lo-") 
(2.94950 x 2.99994 x 
(9.93342 x 9.99980 x lo-'') 
(1.05275 x lo-', 1.06001 x lo-') 

(5.83135 x 10-14, 5.99994 x 10-l~) 
(2.84962 x 2.99994 x lo-'') 
(9.76239 x 9.99980 x 
(5.92900 x 6.09997 x 

(5.81714 X . ~ O - ' ~ ,  5.99401 x 10-l') 
(2.83946 x 2.99401 x 
(9.72888 x 9.98004 x 10-l') 
(1.55489 x lo-', 1.59771 x lo-') 

(5.97707 x 5.99490 x 
(2.98015 x 2.99451 x 
(9.96870 x lo-'', 9.98128 x lo-'') 
(5.97717 x 5.99500 x 

PAWS 
5.83523 x lo-'' 
2.89280 x 
9.65827 x 
9.66415 x 

5.99994 x 
2.99992 x 
9.99980 x 
1.59997 x 

5.99089 x 
2.99483 x 
9.98421 x lo-'' 
1.05836 x lo-' 

5.99925 x 
2.99869 x lo-'' 
9.99365 x 
6.09922 x 

5.98443 x lo-'' 
2.98783 x 
9.95911 x 
1.59465 x lo-' 

5.99400 x 
2.99400 x 
9.97972 x 
5.99410 x 

CARE I11 

9.63961 x 

1.31233 x 

1.03322 x lo-' 

3.10625 x 

1.29556 x lo-' 

1.69753 x 
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Note in the table for example 19 that the unreliability estimates given by CARE 111 are not 
conservative.4 No warning messages or any other indication was given in any of these cases to 
inform the user that the unreliability estimate may not be conservative. Many attempts were 
made by varying the run-time parameters of the CARE 111 program to obtain a conservative 
estimate from CARE 111; but, the estimates were the same regardless of the variation in the 
run-time  parameter^.^ Since CARE 111’s answers are relatively close to the other answers, 
CARE 111’s estimates may be considered good enough for use based on engineering judgment. 
However, the source of the error is unknown; and, more importantly, it is not known whether 
the error accumulates as a model of this kind increases in size and complexity. Potential users 
of CARE 111 should be advised of this situation and should not expect the program to warn 
them that the unreliability estimate is not conservative. 

Example 20 

A triad of components is also the subject for example 20. This model is not a typical 
construct in modeling fault-tolerant systems. The model was not intended to represent an 
actual system behavior-it is simply a semi-Markov model; but, the recovery transition in 
this model can be interpreted to be intermittent without there being any permanent recovery 
transition. In this model, a represents the rate at which a fault goes from the active to the 
benign state and p represents the rate at which a fault goes from the benign to the active state. 
The fault-arrival rate is given by A. 

I 

Example 20: Triad with intermittent faults. 

The CARE I11 model assumes there is an additional recovery transition from state 2 to 
I 

state 4 and from state 5 to state 7; hence, CARE I11 cannot directly model this example. 

CARE 111’s user’s guide (p. D-2, ref. 8) states tha t  separation of the  values of the  fault-handling parameters 
by more than two or three orders of magnitude may cause numerical inaccuracies. The  implications of 
inaccuracy are not elaborated. Since some of the  test cases violate this warning, one might expect CARE 111’s 
estimates t o  differ from the  other estimates. 

The CARE 111 program uses a set of parameters called run-time parameters tha t  indicate the operating 
time and the time scale for which the system is to be assessed. Some of these parameters control the  amount 
of computation tha t  CARE 111 performs (p. 30, ref. 8). The  run-time parameters are not actual parameters of 
the  model as are A, 6, and a in example 19. 
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Comparison Between SURE and PAWS for Example 20 

Parameters 
x = 1 x 1 0 - ~  

= 3.6 x io4 
p = 1 x 10-2 

x = 1 x 1 0 - ~  
cy = 3.6 x io3 
4 = 1 x 10-7 

x = 1 x 1 0 - ~  
a = 3.6 x io3 
p = 1 x 10-3 

x = 1 x 
cr = 3.6 x 10’ 
p = 1 x 

x = 1 x 10-3 

p = 1 x 10-3 
a = 3.6 x lo6 

x = 1 x 10-6 

p = 1 x 10-3 
(U = 3.6 x lo2 

Death 
state 

Total 

Total 

Total 

Tot a1 

Total 

Tot a1 

SURE bounds 

(1.01199 x 10-9, 1.06907 x 

(2.63145 x 2.66675 x 

(1.15315 x lo-’, 1.17260 x lo-’) 

(8.23088 x 1.01292 x 

(9.84826 x 1.00503 x lop6) 

(1.60617 x 1.68509 x 

~ 

PAWS 

1.01597 x lo-’ 

2.66614 x 

1.16566 x lo-’ 

9.98154 x 

9.85141 x 

1.68449 x 

Example 21 
Example 21  is the same triad as in the previous example except that transient faults are 

also considered along with the permanent and intermittent faults. The model parameters are 
defined as follows: A is the fault-arrival rate, cr is the rate at which an intermittent fault goes 
from the active to the benign state, p is the rate at which an intermittent fault goes from the 
benign to the active state, and 7 is the transient-fault-disappearance rate. 

a 

h 

Example 21: Triad with permanent, intermittent, and transient faults. 
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As in the previous example, the CARE I11 model assumes there are additional recovery 
transitions; hence, CARE I11 cannot directly model this example. 

Comparison Between SURE and PAWS for Example 21 

Parameters 
x = 1 x 
a = 3.6 x io3 
p = 1 x 
y = 3.6 x 10' 

x = 1 x 10-6 

p = 1 x 
= 3.6 x io4 

CY = 3.6 x lo6 

x = 1 x 10-6 

p = 1 x 10-7 
Q = 3.6 x lo2 

7 = 3.6 x 10' 

A = 1 x 1 0 - ~  
Q = 3.6 x io5 
p = 1 x 1 0 - ~  
y = 3.6 x lo2 

x = 1 x 
= 3.6 x io4 

p = 1 x 10-1 
= 1 x io4 

x = 1 x 10-2 

p = 1 x 10-1 
= 3.6 x io5 

Q = 3.6 x lo6 

Death 
state 

Total 

Total 

Total 

Total 

Total 

Total 

SURE bounds 

(1.13695 x 1.20386 x lo-') 

(9.96675 x 9.96846 x 

(1.45571 x 1.52343 x 

(9.82746 x 9.98233 x 

(5.65847 x lo-'', 5.67191 x lo-'') 

(6.89651 x 6.89773 x 

PAWS 

1.15119 x 

9.96783 x 

1.52301 x 

9.83332 x 

5.67165 x lo-'' 

6.89742 x 

Example 22 

Example 22 is a system of six components that are vulnerable to both permanent and 
transient faults. Critical triples, where three nearly simultaneous faults can cause system 
failure, are also considered in this model. The parameters for the model are defined as follows: 
A is the fault-arrival rate, and a 2  are the recovery rates from the first and second faults, 
respectively, and y is the transient-fault-disappearance rate. 

As mentioned earlier, CARE I11 cannot directly model this system because of the presence 
of critical-triple faults. As argued before, one might expect that CARE I11 would give a 
conservative estimate of unreliability in cases with critical triples. CARE 111's best estimate 
for the model is given in the following table. The CARE I11 estimates in many of these test 
cases were actually unconservative. 
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a 
1 2 Y 

1 Y 

Example 22: Critical-triple six-plex with transient faults. 
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I Comparison Among SURE, PAWS, and CARE I11 for Example 22 

Parameters 
x = 1 x 10-2 
Q1 = 1 x lo6 
0 2  = 1 x lo6 
y = l  

x = 1 x 10-6 
0 1  = 1 x lo2 
a2 = 1 x 106 
y = 1 x lo2 

x = 1 x 10-3 
Ql = 1 x io5 
Q2 = 1 x io4 
y = l x l O  2 

x = 1 x 10-3 
Ql = 1 x 106 
Q2 = I x io3 
y = 1 x lo2 

x = 1 x 10-6 
Q1 = 1 x io4 

= 1 x io4 
y = 1 x lo2 

x = 1 x 1 0 - ~  
a1 = 1 x 101 

= 1 x 105 
= 1 x io5 

x = 1 x 10-5 
Dl = 1 x 104 
a2 = 1 

= 1 x io4 

Deatl- 
state 

Total 

Total 

Total 

Total 

Total 

Total 

Total 

SURE bounds 

(7.41883 x loF7, 7.42671 x lov7) 

(5.62137 x 6.00014 x 

(9.61445 x 9.96290 x 

(9.69596 x 1.00072 x 

(1.16702 x 1.18814 x 

(1.19360 x 1.20349 x 

(1.81698 x 6.00135 x 

PAWS 

7.42669 x 

5.99695 x 

9.66841 x 

9.71169 x 

1.18808 x 

1.19988 x 

5.39944 x 10-l7 

CARE ~- I11 

7.57083 x 

2.53437 x 

2.82760 x 

1.53586 x 

1.95616 x 

0.00000 

0.00000 

*DELTA > TIME 

Example 23 
Example 23 consists of two triads of components. When there is a fault in either of the 

triads, the system reconfigures with rate 61 into a single system of five components. Only 
critical-pair failures or exhaustion of components result in failure of the system. The failure 
rate of any component is A, and 62 represents the recovery rate once the two triads have formed 
a five-plex. CARE 111 cannot model this example since the behavior of this system cannot be 
captured in a fault-tree representation. 

60 



Example 23: Two triads with permanent faults. 
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Comparison Between SURE and PAWS for Example 23 

Parameters 
A = 1 x 
61 = 1 x 10 
b2 = 1 x io5 

5 

A = 1 x 
s1 = 1 x io5 
62 = 1 x 10 1 

x = 1 x 
61 = 1 x 10 
62 = 1 x 10 

2 
4 

x = 1 x 1 0 - ~  
b1 = 1 x io3 
62 = 1 x 10 4 

x = 1 x 10-6 
b1 = 1 x io5 
62 = 1 x 10 4 

x = 1 x 
61 = 1 x 10 
62 = 1 x 10 

4 

4 

x = I x 1 0 - ~  
61 = 1 x 10 
62 = 1 x lo1 

2 

x = I x 
61 = 1 x 106 
62 = 1 x 10 2 

Death 
state 

Total 

Total 

Total 

Total 

Total 

Total 

Total 

Total 

SURE bounds 

(1.19928 x lo-'', 1.20631 x lo-'') 

(4.99102 x 7.20060 x 

(1.09199 x lo-', 1.20006 x 

(1.16630 x 1 0 - ~ 5 ,  1.20000 x 10-l~) 

(1.19716 x 1.20060 x 

(2.29458 x 2.32928 x 

(1.41745 x 1.80633 x 

(5.33614 x lo-'', 6.12630 x lo-'') 

PAWS 

1.20269 x 

7.07923 x 

1.19527 x 

1.19988 x 

1.20056 x 

2.32884 x loW5 

1.73510 x 

6.09198 x 

Example 24 

A system of three processors, two memories, and one bus is modeled in example 24. 
Exhaustion of any one of the three component types causes the system to fail. In this model, 
X i  is the failure rate of a processor, A2 is the failure rate of a memory, and A3 is the failure 
rate of a bus. System failure due to bus failure is represented by state 6; system failure due 
to exhaustion of processors is represented by state 7; and system failure due to exhaustion of 
memories is represented by state 8. 
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Example 24: System of three processors, two memories, and one bus. 

(9.94373 x 1.02530 x 
(9.76960 x 1.01500 x 
(9.82728 x 1.02015 x 
(1.00430 x 1.03560 x 

Comparison Among SURE, PAWS, and CARE I11 for Example 24 

9.94984 x 
9.77715 x lop7 
9.83490 x 
1.00492 x 

Parameters 
x1 = 1 x 10-3 
x2 = 1 x 10-3 
x3 = 1 x 10-3 

x1 = 1 x 10-7 
A2 = 1 x 10-2 
A3 = 1 

A 1  = 1 x 10- 
x2 = 1 x 10-7 
x3 = 1 x 10-3 

A 1  = 1 
A2 = 1 x 10-2 
A3 = 1 x 10-2 

A 1  = 1 x 10- 
A2 = 1 x 10- 
x3 = 1 x 1 0 - ~  

x1 = 1 x 1 0 - ~  
A2 = 1 x 10- 
A3 = 1 x 10-6 

3 

6 
4 

2 

(9.99761 x 9.99761 x 10-l) 
(5.97672 x 5.97672 x 

Death 
state 

9.99761 x 10-1 
5.97672 x 
1.94052 x 

SURE bounds 1 PAWS 

(9.92979 x 10-'0, 9.92979 x 
(9.05586 x lod3, 9.05586 x 
(9.06583 x 9.06583 x 

9.92979 x 
9.05586 x 
9.06583 x 

(1.94052 x 1.94052 x 
(9.99955 x 10-1, 9.99955 x 10-1) 

(9.94748 x lod3, 1.01510 x 
(9.77500 x 1.00000 x 
(9.92954 x 1.02015 x 
(9.94845 x 1.01520 x 

(1.80937 x 1.80937 x 
(9.81338 x lod1, 9.81338 x 10-l) 
(4.46411 x 4.46411 x 
(9.99878 x 9.99878 x 10-l) 

(9.99498 x 1.00102 x 

(1.00050 x 10-3, 1.00202 x 10-3) 

(9.99232 x 1.00150 x 
(9.98333 x 1.00002 x 

(9.96900 x 9.96900 x 

9.99955 x 10-1 

9.77773 x 10-7 
9.93357 x 10-l3 

9.95016 x 

9.95114 x 

1.80937 x 
9.81338 x 10-1 
4.46411 x 
9.99878 x 10-1 

9.99500 x 
9.99235 x 
9.98335 x lov7 
1.00050 x 

9.96900 x 

CARE I11 

1.00492 x 

3.99955 x 10-1 

3.95114 x 

3.99878 x 10-1 

1.00050 x 

3.06582 x 
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Example 25 

Example 25 consists of a system of five components that are critically paired and are 
susceptible to intermittent faults. The parameters of the model are defined as follows: X 
is the fault-arrival rate, a is the rate at which an intermittent fault goes from the active to the 
benign state, p is the rate at which an intermittent fault goes from the benign to the active 
state, and 6 is the permanent-fault-recovery rate. 

2 P  

a 3 P  

Example 25: Critical-pair five-plex with intermittent faults. 
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Comparison Among SURE, PAWS, and CARE I11 for Examde 25 

Parameters 

x = 1 x 10-6 
a = 3.6 x 1 0 - ~  
p = 1 x 
6 = 3.6 x lo6 

x = 1 x 10-6 

p = 1 x lo1 

x = 1 x 10-6 

p = 1 x 10-1 

x = 2 x 1 0 - ~  
a = 3.6 x 1 0 - ~  

a = 3.6 x 

6 = 3.6 x lo2 

a = 3.6 x lo-’ 

6 = 3.6 x lo2 

p = 3.6 x 
6 = 3.6 x lo1 

x = 1 x 1 0 - ~  

p = 1 x 10-1 

x = 1 x 10-8 
a = 1 x lo-’ 
p = 1 x lo2 

x = 1 x 1 0 - ~  
a = 1 x 102 
p = 1 x lo1 

a = 3.6 

6 = 3.6 x lo2 

6 = 1 x lo6 

6 = 1 x lo3 

*PSTRNC 

I Total system unreliability 
SURE bounds 

(1.38822 x 1.38889 x 

(5.29698 x 5.55674 x 

(5.29530 x 5.55417 x 

(1.90313 x 2.22230 x 

(5.28272 x 5.54082 x 

(1.99821 x 2.00000 x 

(2.13068 x lo-’, 2.19804 x lo-’) 

reduced to 

PAWS 

1.38888 x 

5.55449 x 

5.55249 x 10- l~  

2.21589 x 

5.53926 x 

2.00000 x 

CARE III* CARE I11 

5.57649 x 5.57658 x lo-] 

5.57028 x 5.57036 x 10-1 

5.53959 x 1 0 - l ~  5.53967 x IO-] 

3.19998 x 2.21615 x 10-I 

9.99998 x 5.50788 x lo-’ 

3.12500 x 2.00275 x lo-’ 

2.19131 x lo-’ 12.18797 x lo-’ 12.18797 x lo-’ 

The results listed under the CARE III* column were obtained by reducing one of the run- 
time parameters, PSTRNC,6 of the CARE I11 program from the default value of to 

When the above test cases were run with CARE 111 with all the default run-time 
parameters, many of the unreliability estimates (shown in the first CARE I11 column) were off 
by several orders of magnitude. More importantly, these estimates were not conservative and 
no warning messages were output by CARE 111. After experimenting with several of the run- 
time parameters, reducing the PSTRNC parameter helped CARE I11 to give better estimates. 
Since the difference between the estimates in the CARE III* column and the other estimates 

The PSTRNC parameter is used to  limit the number of fault vectors that CARE I11 uses in computing the 
fault-handling unreliability. Only the fault vectors whose module depletion probability is less than PSTRNC 
are included in the fault-handling unreliability calculation (p. 31, ref. 8). 
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is relatively small, the CARE III* estimates may be considered good enough for use based 
on engineering judgment. However, some of the estimates given by CARE I11 are still not 
conservative, and the source of this error is not evident. 

Example 26 

The system modeled in example 26 is a triad of processors with five cold spare processors. 
The system is operational as long as there are two working processors. Replacement of a failed 
processor with a failed spare is possible. Since the model is large, 63 states and 102 transitions, 
only part of the model is shown in the sketch. The construction of the entire model should be 
obvious, though, from the portion shown and the model description. The parameters of the 
model are as follows: Ap is the failure rate of an active processor, A, is the failure rate of a cold 
spare, and S is the fault-recovery rate. This system cannot be modeled with CARE I11 since 
the spares are cold. CARE I11 assumes that a spare module has the identical fault-handling 
characteristics as that module does when it is being used by the system. If A, = A,, CARE I11 
could be used for this example. 

3 h  

2 h  

Example 26: Triad with five cold spares. 
I 



Comparison Between SURE and PAWS for Example 26 

Parameters 
A, = 1 x 
A, = 1 x 10-5 
s = 3.6 x 103 

A, = 1 x 10-6 
A, = 1 x 10-3 
6 = 3.6 x 103 

A, = 1 x 10-3 
A, = 1 x 10-6 
6 = 3.6 x 103 

A, = 1 x 
A, = 1 x 1 0 - ~  
S = 3.6 x lo1 

A, = 1 x 10-2 
A, = 1 x 10-5 
s = 3.6 x 105 

A, = 1 x 10-2 
A, = 1 x 10-4 
6 = 3.6 x lo2 

A, = 1 x 10-6 
A, = 1 x 10-5 
s = 3.6 x io4 

Death 
state 

Total 

Total 

Total 

Total 

Total 

Total 

Total 

SURE bounds 

(1.64198 x 1.66967 x 10-l') 

(1.64941 x 1.71776 x 

(1.64159 x 1.69197 x lob8) 

(1.42790 x 1.67422 x 

(3.92378 x 3.93185 x 

(1.58754 x 1.66986 x lod5) 

(1.65890 x 1.66719 x 

PAWS 

1.67503 x 

1.66663 x 

1.66670 x 

0-14 

0-8 

1.66284 x loM8 

3.93183 x 

1.66913 x 

1.66674 x 

Example 27 

The model for example 27 represents a system of three triads of processors with a pool of 
four spare processors. Two faults in an active triad cause system failure, and the system also 
fails if there is only one working triad. A failed triad is also broken up when no spares are 
available. This model has a total of 450 states and 946 transitions. Since this model contains 
more than 300 states, PAWS cannot be used. The program STEM was used for this example 
since it does have the capability to compute the exact death-state probabilities for Markov 
models as large as 1000 states. The parameters of the model are defined as follows: A, is the 
failure rate of an active processor, A, is the failure rate of a cold spare, 61 is the reconfiguration 
rate to switch in a spare, and 62 is the reconfiguration rate to break up a triad. 

67 



Example 27: System of three triads with a pool of four spares. 

Parameters 
A, = 1 x 
A, = 1 x 10-5 
6' = 3.6 x 103 
s2 = 5.1 x 103 

A, = 1 x 
A, = 1 x 
s1 = 3.6 x 103 
s2 = 3.6 x 103 

A, = 1 x 10-2 
A, = I x 1 0 - ~  
6' = 3.6 x io4 
62 = 3.6 x 10' 

A, = 1 x 10-4 
A8 = 1 x 10-5 

s2 = 3.6 x io5 
61 = 3.6 x lo2 

A, = 1 x 10-3 
A, = 1 x 1 0 - ~  
s1 = 3.6 x io5 
62 = 3.6 x lo2 

Comparison Between SURE and STEM for Example 27 
Death 
state 

Total 

Total 

Total 

Total 

Total 

SURE bounds 

(4.92568 x lo-'', 5.02425 x lo-'') 

(4.93221 x 5.17200 x 

(2.32096 x 3.45050 x 

(4.76688 x 5.02384 x 

(4.98999 x lo-'', 5.24846 x lo-'') 

STEM 

5.00011 x lo-'' 

5.02509 x 

3.36494 x 

4.99885 x lo-' 

5.00567 x lo-'' 
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Example 28 

Example 28 is a system of seven components that are susceptible to transient faults. The 
system fails if a majority of the active components have failed. The model has the following 
parameters: X is the permanent-fault-arrival rate, 7 is the transient-fault-arrival rate, w is the 
transient-fault-disappearance rate, and 6 is the fault-recovery rate. Since the model is large, 
50 states and 100 transitions, only a portion of the model is shown in the figure. 

Example 28: Seven-plex with transient faults. 
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Comparison Between SURE and PAWS for Example 28 

Parameters 
x = 1 x 

= 1 x 
w = 5 x 10-1 
6 = 3.6 x 103 

x = 1 x 
7 = 1 x 10-2 

= 1 x 
s = 3.6 x lo3 

x = 1 x 
= 1 x 1 0 - ~  

w = 1 x 10-2 
s = 3.6 x io5 

x = 1 x 10-3 

w = 5 x 10-1 
= 1 x 

6 = 3.6 x lo2 

x = I x 
7 = 1 x 10-6 

6 = 3.6 x io4 
w = 1 x 

x = 1 x 10-2 
= 1 x 1 0 - ~  
= 1 x 10-3 

6 = 3.6 x lo2 

Death 
state 

Total 

Total 

Total 

Total 

Total 

Total 

SURE bounds 

(1.17543 x 1.28755 x 

(4.61234 x 4.82377 x 

(4.12632 x 

(1.35520 x 

0-lo, 4.48096 x lo-'') 

0-l1, 1.76273 x lo-'') 

(7.63071 x 7.74103 x lo-'') 

(4.27984 x 5.28384 x 

PAWS - 

1.23283 x lo-" 

4.81975 x 

4.14876 x lo-'' 

1.67470 x 

7.71014 x 

5.24063 x 
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Appendix C 

Analytic 
solution ARIES CARE I11 

Additional Comparisons of SURE With CARE I11 and ARIES 

Recall that the following models, examples 29 through 35, were taken from reference 14. 
This report describes a comparative analysis between the ARIES and CARE I11 tools designed 
to show the strengths and weaknesses of each tool for analyzing architectures for fault-tolerant 
aerospace systems. Seven simple reliability models were analyzed with ARIES and CARE I11 
and compared with a direct calculation of the unreliability of the modeled system. The SURE 
program was run for each of these models, and SURE’S bounds are given along with the 
corresponding results from ARIES, CARE 111, and a direct calculation of the unreliability. 

Example 29 

Example 29 represents the most basic construction in any Markov model-the failure of 
a solitary component such as a processor. The model is a simple two-state model where the 
component failure rate is A. 

SURE bounds 

Example 29: Failure of a single component. 

0 

1.59 x 

1.30 x 1O-l’ 

9.99 x 10-17 

5.00 x 

1.00 10-15 

9.99 x 10-l3 

1.00 x 10-10 

9.995 x 

6.32 x 10-1 

The analytic solution for the probability of the failure of this system during a mission time 
T is D2(T) = 1 - e-XT.  When AT is very small D2(T) M AT. 

(0.00000, 0.00000) 

(1.59000 x 1.59000 x 

(1.30000 x 1.30000 x 1O-l’) 

(i.ooooo x io-16, i.ooooo x 10-l~) 

(5.00000 x 5.00000 x 

(LOOOOO x 10-15, i.ooooo x 10-l~) 

(i.ooooo x io-12, i.ooooo x 10-l~) 

(1.00000 x 10-10, 1.00000 x 10-10) 

(9.99500 x o.ooooo x 

(6.32121 x 6.32121 x 10-l) 

Parameter 
AT 

1.59000 x 

1.30000 x 1O-l’ 

LOOOOO x 10-16 

5.00000 x 

LOOOOO x 10-15 

LOOOOO 10- l~  

1.00000 x 10-10 

3.99500 x 

5.32121 x lo-’ 

3 

1.59 x 

1.30 x 10-l‘ 

1.0 x 10-16 

5.0 x 

1.0 x 10-’5 

1.0 x 10-12 

1.0 x 10-10 

1.0 x 10-3 

1.0 

0 

0 

6.94 x 10-l~ 

4.85 x 

9.99 x 10- l~  

9.99 x 10- l~  

9.99 x 10-11 

9.995 x 

6.32 x 10-1 



Example 30 
In example 30, a triad of components is represented. This system simply degrades with 

no recovery mechanism, and system failure occurs when there is only one working component. 
The fault-arrival rate is A. For all the test cases for this model, A = 

For this example, the analytic solution for the death-state probability for a given mission 
time T is D 3 ( T )  = 1 - 2e-3XT - 3e-2XT. 

2.99950 x lop8 

7.49375 x lo-' 

2.99500 x 

3.00000 x 

2.99995 x lo-'' 

5.05122 x lo-' 

3 h  2 h  

2.99950 x lop8 2.99950 x 

7.49375 x 7.49374 x 1 0 - ~  

2.99500 x lop6 2.99500 x 

2.99996 x 2.99999 x 

2.99999 x lo-'' 2.99995 x lo-'' 

5.05122 x lo-' 5.05122 x 10-1 

Example 30: l l i ad  with no recovery and with no spares. 

Parameter 
T 

0 

1 

5 

10 

.01 

.10 

7000 

Comparison of SURE, ARIES, and CARE I11 for Example 30 

Analytic I I 

0 lo lo 
SURE bounds 

(0.00000, 0.00000) 

(2.99950 x 3.00000 x lop8) 

(7.49375 x 7.50000 x 

(2.99500 x 3.00000 x 

(3.00000 x 3.00000 x 

(2.99999 x lo-", 3.00000 x lo-''; 

(5.05122 x lo-', 5.05122 x lo-') 

Example 31 
Example 31 is a system of 12 components that fail with rate A. As in the previous model, 

there is no recovery process and there are no spares. 

Example 31: Twelve-plex with no recovery and no spares. 

For this model, the analytic solution for the unreliability of the system &3 for a given 
mission time T is 
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Analytic 
Parameters solution 

x = 1 x 1 0 - ~  
T = 8000 5.28830 x lo-' 

Example 32 
Example 32 is a system of five components in which a majority of the components must be 

working properly in order for the system to operate. The system is not constrained to only 
critically coupled faults. In the model for this example, A is the fault-arrival rate and S is the 
faul t-recovery rate. 

ARIES CARE I11 SURE bounds 

5.28830 x lo-' 5.28830 x lo-' (5.28830 x lo-', 5.28830 x lo-') 

Example 32: Five-plex system with permanent faults. 

The unreliability of the system in example 32 for a given mission time T is 

Analytic 
approximation ARIES 

5.81686 x 5.81907 x 

3X(1- 5e-4xT + 4 e - 5 x T )  PF(T) 6 + 5(1- e-xT)4e-xT + (1 - 

CARE 111 SURE bounds 

5.61405 x 10-l' (5.69942 x 5.83454 x 10-l2) 

Parameters 

6 = 3.6 x lo3 
T = 10 

Note that CARE 111's solution for example 32 is more than two orders of magnitude greater 
than the other solutions. The inaccuracy in this case is probably due to CARE 111's inability 
to directly model critical-triple faults. 
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Example 33 
Example 33 is a triad with two powered spares. In the model, X is the fault-arrival rate and 

The following is an approximation for the unreliability of this system for a mission time T: 
S is the fault-recovery rate. 

Parameters 

x = 1 x 
6 = 3.6 io3 
T = l O  

Example 33: Triad with two powered spares. 

Analytic 
approximation ARIES CARE I11 SURE bounds 

1.71653 x 10-l' 1.71653 x 10-l' 1.70686 x lo-'' (1.69100 x lo-''. 1.72084 x lo-'') 

Comparison of SURE, ARIES, and CARE I11 for Example 33 

Example 34 
Example 34 is a triad of components with seven unpowered spare components. The system 

must have two working components to keep the system operational. In the model, X is the 
fault-arrival rate and 6 is the fault-recovery rate. 

This example involves unpowered spares; thus, CARE I11 cannot be used since it assumes 
that all spares are powered. The following is an approximation for the unreliability of the 
system: 

pF(T) s 
2(1-  e-3XT) 

+ 1 - 38,-2XT + ,-3XT [6560 + 2186(3XT) + 728(3XT)2 

242(3XT)3 + 80(3XT)4 26(3XT)5 + 8(3XT)6 + 2(3XT)'] 
+ 6  24 + 120 720 5040 
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6 

6 

6 

6 

6 

Example 34: Triad with seven unpowered spares. 

Analytic 
approximation 

9.99839 x 10-1 

I Comparison of SURE and ARIES for Example 34 

ARIES SURE bounds 

9.99 x 10-1 (9.99873 x 9.99887 x 10-l) 

Parameters 
A = 1 x 
6 = 3.6 x 103 
T = 87600 

Example 35 

The system for example 35 is a simple flight-control system composed of eight sets of quad 
sensors, eight sets of quad actuators, and two triplex processors. In this system only one triplex 
of the processors is performing critical functions, and this triplex is replaced by the second set 
once the first set experiences three faults. The system fails if a sepsor set is lost, an actuator 
set is lost, or two of the processors in either triplex are lost. A senSor set is lost when three of 

75 



the four sensors fail. Similarly, an actuator set is lost if three of the four actuators fail. 
Since the Markov model for this system is extremely large, over 30000 states, the fault- 

tree representation of this model is given in the figure. To generate the Markov model for 
this example, the ASSIST (Abstract Semi-Markov Specification Interface to the SURE Tool) 
program was used (ref. 15). To generate a model with ASSIST, the user inputs rules describing 
the behavior of the system being modeled using a predefined abstract language. From these 
rules, ASSIST automatically generates the semi-Markov model in the format needed as input 
to SURE. 

Fault Tree 

failure 

Q Q 

Quad sensors Triplex 
processors 

314 314 314 8 
Q 

Quad actuators 

Example 35: Fault tree for a flight-control system. 

The following parameters were used for this model: As is the failure rate of a sensor, XA is 
the failure rate of an actuator, and Xp is the failure rate of a processor. The following is an 
approximation for the probability of this system's failure: 

PF(T)  M 32XiT3 + 32XiT3 + 9XpT 4 4  
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Parameters 

xs = 1 

x p  = 1 x 
XA = 1 x 

T = 10 

77 

Analytic 
approximation ARIES CARE I11 SURE bounds 

1.54000 x lop7 1.50909 x 1.50909 x (1.50823 x lop7, 1.55344 x 
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